Skip to main content
Log in

Simple and sensitive electrochemical determination of higenamine in dietary supplements using a disposable pencil graphite electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, a cheap, rapid, simple, and modification-free electroanalytical methodology based on the disposable pencil graphite electrode is described for the quantification of higenamine (isoquinoline-type alkaloid having three phenolic OHs). At first, the electrochemical oxidation of higenamine was investigated in aqueous solutions by cyclic voltammetry. The electrode process is pH-dependent and controlled by a mixture of diffusion and adsorption processes. Higenamine yielded two well-separated oxidation steps in acidic, neutral, and alkaline media by using square-wave voltammetry. By using the first oxidation peak due to its higher sensitivity, there was an excellent correlation between oxidation peak current at + 0.44 V and higenamine concentration (as hydrochloride salt) in the range of 0.05 to 2.0 μg cm−3 (1.63 × 10−7–6.5 × 10−6 mol dm−3), with a detection limit of 0.014 μg cm−3 (4.55 × 10−8 mol dm−3) in Britton–Robinson buffer at pH 4.0. As an example, the developed approach can be used for the quantification of higenamine in the commercial dietary supplement formulations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ilag LL (2018) Med Res Innov 2:1

    Article  Google Scholar 

  2. Ahn K (2017) BMB Rep 50:111

    Article  CAS  Google Scholar 

  3. Ngo LT, Okogun JI, Folk WR (2013) Nat Prod Rep 30:584

    Article  CAS  Google Scholar 

  4. Calvert R, Vohra S, Ferguson M, Wiesenfeld P (2015) Food Chem Toxicol 78:207

    Article  CAS  Google Scholar 

  5. Lee SR, Schriefer JM, Gunnels TA, Harvey IC, Bloomer RJ (2013) Lipids Health Dis 12:148

    Article  Google Scholar 

  6. Sato S, Shirato K, Kizaki T, Ohno H, Tachiyashiki K, Imaizumi K (2012) J Phys Fit Sport Med 1:139

    Article  Google Scholar 

  7. Zhang N, Lian Z, Peng X, Li Z, Zhu H (2017) J Ethnopharmacol 196:242

    Article  CAS  Google Scholar 

  8. Cohen PA, Travis JC, Keizers PHJ, Boyer FE, Venhuis BJ (2019) Clin Toxicol 57:125

    Article  CAS  Google Scholar 

  9. Stajić A, Anđelković M, Dikić N, Rašić J, Vukašinović-Vesić M, Ivanović D, Jančić-Stojanović B (2017) J Pharm Biomed Anal 146:48

    Article  Google Scholar 

  10. Ryu JC, Song YS, Kim M, Cho JH, Yun-Choi HS (1993) Arch Pharm Res 16:213

    Article  CAS  Google Scholar 

  11. Okano M, Sato M, Kageyama S (2017) Drug Test Anal 9:1788

    Article  CAS  Google Scholar 

  12. Lo CF, Chen CM (1994) J Chromatogr B Biomed Sci Appl 655:33

    Article  CAS  Google Scholar 

  13. Grucza K, Kwiatkowska D, Kowalczyk K, Wicka M, Szutowski M, Cholbinski P (2018) Drug Test Anal 10:1017

    Article  CAS  Google Scholar 

  14. Hong H, Lee YI, Jin D (2010) Microchem J 96:374

    Article  CAS  Google Scholar 

  15. Feng S, Jiang J (2011) J Chromatogr B Biomed Sci Appl 879:763

    CAS  Google Scholar 

  16. Jae-Chun R, Yun-Seo S, Myungsoo K, Jung-Hyuck C, Hye Sook YC (1993) Arch Pharm Res (Seoul) 16:213

    Article  Google Scholar 

  17. Allahverdiyeva S, Talay Pınar P, Keskin E, Yunusoğlu O, Yardım Y, Şentürk Z (2020) Sens Actuators B 303:127174

    Article  CAS  Google Scholar 

  18. Sajid M, Baig N, Alhooshani K (2019) TrAC Trends Anal Chem 118:368

    Article  CAS  Google Scholar 

  19. Svítková J, Ignat T, Švorc Ľ, Labuda J, Barek J (2016) Crit Rev Anal Chem 46:248

    Article  Google Scholar 

  20. David IG, Popa D-E, Buleandra M (2017) J Anal Meth Chem. https://doi.org/10.1155/2017/1905968

    Article  Google Scholar 

  21. Kawde A-N, Baig N, Sajid M (2016) RSC Adv 6:91325

    Article  CAS  Google Scholar 

  22. Akanda MR, Sohail M, Aziz MA, Kawde A-N (2016) Electroanalysis 28:408

    Article  CAS  Google Scholar 

  23. Torrinha Á, Amorim CG, Montenegro MC, Araújo AN (2018) Talanta 190:235

    Article  CAS  Google Scholar 

  24. Rana A, Baig N, Saleh TA (2019) J Electroanal Chem 833:313

    Article  CAS  Google Scholar 

  25. Skrzypczynska K, Kusmierek K, Swiatkowski A, Dabek L (2018) Int J Electrochem Sci 13:88

    Article  CAS  Google Scholar 

  26. Levent A, Yardım Y, Şentürk Z (2009) Electrochim Acta 55:190

    Article  CAS  Google Scholar 

  27. Yardım Y, Keskin E, Levent A, Özsöz M, Şentürk Z (2010) Talanta 80:1347

    Article  Google Scholar 

  28. Keskin E, Yardım Y, Şentürk Z (2010) Electroanalysis 22:1191

    Article  CAS  Google Scholar 

  29. Levent A, Keskin E, Yardım Y, Şentürk Z (2011) Rev Anal Chem 30:45

    Article  CAS  Google Scholar 

  30. Yardım Y, Şentürk Z (2011) Turk J Chem 35:413

    Google Scholar 

  31. Yardım Y (2011) Rev Anal Chem 30:37

    Article  Google Scholar 

  32. Pınar PT (2020) Acta Chim Slov. https://doi.org/10.17344/acsi.2019.5367

    Article  Google Scholar 

  33. Öztürk F, Tasdemir IH, Altunöz Erdogan D, Erk N, Kılıc E (2011) Acta Chim Slov 58:830

    PubMed  Google Scholar 

  34. Rahayu RS, Noviandri I, Buchari B, Abdullah M, Hinoue T (2012) Int J Electrochem Sci 7:8255

    CAS  Google Scholar 

  35. Fotouhi L, Hashkavayi AB, Heravi MM (2013) J Exp Nanosci 8:947

    Article  CAS  Google Scholar 

  36. Shankar SS, Kumara Swamy BE, Mahanthesha KR, Sathisha TV, Vishwanath CC (2013) Anal Bioanal Electrochem 5:9

    Google Scholar 

  37. Silva LP, Vicentini FC, Lourencao BC, Oliveira GG, Lanza MRV, Fatibello-Filho O (2016) J Solid State Electrochem 20:2395

    Article  CAS  Google Scholar 

  38. Alipour E, Majidi MR, Saadatirad A, Golabi SM, Alizadeh AM (2013) Electrochim Acta 91:36

    Article  CAS  Google Scholar 

  39. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, NewYork

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yavuz Yardım or Zühre Şentürk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pınar, P.T., Yardım, Y. & Şentürk, Z. Simple and sensitive electrochemical determination of higenamine in dietary supplements using a disposable pencil graphite electrode. Monatsh Chem 151, 301–307 (2020). https://doi.org/10.1007/s00706-020-02556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02556-y

Keywords

Navigation