Skip to main content

Advertisement

Log in

Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The use of nanotechnology and the fields of application of nanomaterials are growing vastly, but the negative health effects on the exposed employees are not well studied. The standardized methods of monitoring of occupational exposure are still absent. The task of occupational physicians is to find the ways of evaluation of potential risks of exposure to engineered nanoparticles and to determine the biomarkers for early diagnostics and prevention of occupational diseases. The aim of our study was to detect and identify engineered nanoparticles in biological samples received from occupationally exposed subjects and to evaluate the association of findings with the results of external aerosol measurements on the workplace. The study cohort consisted of two groups of subjects. The first group was exposed to engineered nanoparticles containing mainly iron, manganese, and carbon compounds; the second group was exposed to the nanoparticles containing copper oxide. The post-shift biological samples (urine, blood serum, and exhaled breath condensate) were collected. The analysis was performed by transmission electron microscopy and energy-dispersive spectroscopy. The nanoparticles were detected in all the biological samples. The most common identified chemical elements were the biogenic ones (carbon, potassium, chlorine, oxygen), but the nanoparticles containing metals were identified in EBC, blood, and urine as well (gold, silver, copper, lanthanum, cerium, and tantalum). Our results demonstrate the possibility of detection of occupational exposure to the engineered nanoparticles in human biological fluids. Further studies are necessary to compare the pre-shift and post-shift burden of samples with engineered nanoparticles and to determine the magnitude of occupational exposure during the shift.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Loeffler J, Hedderich R, Koskinen J, Linder M, Lojkowski W, Moritz T, Zins M, Bernabeu E, Larena A (2015) Nanomaterial Roadmap. http://www.tut.ee/public/m/Mehaanikateaduskond/Instituudid/Materjalitehnika_instituut/MTX9100/Additional_reading/NanoMat2015.pdf. Downloaded 29 Dec 2018

  2. Foltynowicz Z, Gwiazdowska D, Rodewald D, Nowaczyk A, Filipiak M (2013) Fibres 21:91

    CAS  Google Scholar 

  3. Elder A, Vidyasagar S, DeLouise L (2009) Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Theegarten D, Boukercha S, Philippou S, Anhenn O (2010) Diagn Pathol 5:77

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh N, Jenkins GJ, Asadi R, Doak SH (2010) Nano Rev 1:5358

    Article  CAS  Google Scholar 

  6. Singh N, Jenkins GJ, Nelson BC, Marquis BJ, Maffeis TG, Brown AP, Williams PM, Wright CJ, Doak SH (2012) Biomaterials 33:163

    Article  CAS  PubMed  Google Scholar 

  7. Dumkova J, Vrlikova L, Vecera Z, Putnova B, Docekal B, Mikuska P, Fictum P, Hampl A, Buchtova M (2016) Int J Mol Sci 17:874

    Article  CAS  PubMed Central  Google Scholar 

  8. Dumkova J, Smutna T, Vrlikova L, Le Coustumer P, Vecera Z, Docekal B, Mikuska P, Capka L, Fictum P, Hampl A, Buchtova M (2017) Part Fibre Toxicol 14:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ursini CL, Cavallo D, Fresegna AM (2014) J Appl Toxicol 34:1209

    Article  CAS  PubMed  Google Scholar 

  10. Hsieh SF, Bello D, Schmidt DF (2013) Small 9:1853

    Article  CAS  PubMed  Google Scholar 

  11. Hurbankova M, Cerna S, Kovacikova Z (2013) Cent Eur J Public Health 21:165

    Article  CAS  PubMed  Google Scholar 

  12. Pirela SV, Miousse IR, Lu X (2015) Environ Health Perspect 124:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O (2016) Occup Environ Med 73:110

    Article  CAS  PubMed  Google Scholar 

  14. Pelclova D, Zdimal V, Schwarz J, Dvorackova S, Komarc M, Ondracek J, Kostejn M, Kacer P, Vlckova S, Fenclova Z, Popov A, Lischkova L, Zakharov S, Bello D (2018) Nanomaterials 8:E611

    Article  CAS  PubMed  Google Scholar 

  15. Pelclova D, Zdimal V, Kacer P, Komarc M, Fenclova Z, Vlckova S, Zikova N, Schwarz J, Makes O, Navratil T (2017) Rev Environ Health 32:193

    Article  CAS  PubMed  Google Scholar 

  16. Pelclova D, Zdimal V, Kacer P, Zikova N, Komarc M, Fenclova Z, Vlckova S, Schwarz J, Makes O, Syslova K (2017) Nanotoxicology 11:52

    Article  CAS  PubMed  Google Scholar 

  17. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O (2016) J Breath Res 10:036004

    Article  PubMed  Google Scholar 

  18. Muccilli V, Saletti R, Cunsolo V, Ho J, Gili E, Conte E, Sichili S, Vancheri C, Foti S (2015) J Pharm Biomed Anal 105:134

    Article  CAS  PubMed  Google Scholar 

  19. Hayes SA, Haefliger S, Harris B, Pavlakis N, Clarke SJ, Molloy MP, Howell VM (2016) J Breath Res 10:034001

    Article  CAS  PubMed  Google Scholar 

  20. Schulte P, Leso V, Niang M, Iavicoli I (2018) Toxicol Lett 298:112

    Article  CAS  PubMed  Google Scholar 

  21. Bitounis D, Pourchez J, Forest V, Boudard D, Cottier M, Klein JP (2016) Biomaterials 76:302

    Article  CAS  PubMed  Google Scholar 

  22. Muller DA, Grazul J (2001) Microsc 50:219

    Article  CAS  Google Scholar 

  23. MEE: Energy Dispersive X-ray Spectroscopy (EDS). https://www.mee-inc.com/hamm/energy-dispersive-x-ray-spectroscopyeds/. Downloaded 29 Oct 2018

  24. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, Navratil T, Schwarz J, Zikova N, Barosova H, Turci F, Komarc M, Pelcl T, Belacek J, Kukutschova J, Zakharov S (2015) J Breath Res 10:016004

    Article  CAS  Google Scholar 

  25. Rosa LR, Rosa RD, da Veiga MAMS (2016) J Environ Chem Eng 4:3451

    Article  CAS  Google Scholar 

  26. Oliveira M, da Boit K (2018) J Clean Prod 47:188

    Google Scholar 

  27. Priyadarsini S, Mukherjee S, Mishra M (2017) J Oral Biol Craniofac Res 8:58

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hentz FC Jr, Long GG (1976) J Chem Educ 53:651

    Article  CAS  Google Scholar 

  29. Pelclova D, Zdimal V, Komarc M, Vlckova S, Fenclova Z, Ondracek J, Schwarz J, Kostejn M, Kacer P, Dvorackova S, Popov A, Klusackova P, Zakharov S, Bello D (2018) Nanomaterials (Basel) 8:E731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Czech Science Foundation (GA ČR No. 18-02079S), Czech Science Foundation Grant no. P503/12/G147, the Projects PROGRES Q25, Q29 of Charles University in Prague and project GAUK of Charles University in Prague (No. 192718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Lischkova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lischkova, L., Pelclova, D., Hlusicka, J. et al. Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. Monatsh Chem 150, 511–523 (2019). https://doi.org/10.1007/s00706-019-2379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-2379-z

Keywords

Navigation