Skip to main content
Log in

Applicability of voltammetric determination of diclofenac at carbon paste electrodes to the analysis of aqueous solutions purified by adsorption and/or ionic liquid-based ion exchange

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This contribution summarises the results from an initial electrochemical study of anti-inflammatory drug diclofenac at carbon paste electrodes focused on the applicability to the determination of this substance in environmental samples, namely, in aqueous solutions containing diclofenac. The substance of interest could be readily oxidized at carbon paste electrodes modified in situ with cetyltrimethylammonium bromide enhancing the response of diclofenac. The respective voltammetric method has been characterised with respect to the linear range, detection capabilities, and the overall analytical performance. Applicability of the procedure developed was examined on a set of model samples polluted with diclofenac before and after treatment with charcoal and/or various lipophilic ionic liquids to define the efficiency of such purification process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Küster A, Adler N (2014) Philos Trans R Soc Lond 369:1656

    Article  CAS  Google Scholar 

  2. Sallmann AR (1986) Am J Med 80:31

    Article  Google Scholar 

  3. Kummerer K (2001) Pharmaceuticals in the environment: sources, fate, effects and risks. Springer, Berlin

    Book  Google Scholar 

  4. Lonappan L, Brar SK, Das RK, Verma M, Surampalli RY (2016) Environ Intern 96:127

    Article  CAS  Google Scholar 

  5. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD (2004) Aquat Toxicol 68:141

    Article  CAS  PubMed  Google Scholar 

  6. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J (2004) Aquat Toxicol 68:151

    Article  CAS  PubMed  Google Scholar 

  7. Cherik D, Louhab K (2015) Res J Chem Environ 19:40

    CAS  Google Scholar 

  8. Zhang Y, Geissen SU, Gai C (2008) Chemosphere 73:1157

    Google Scholar 

  9. Coimbra RN, Escapa C, Paniagua S, Otero M (2016) Desal Wat Treat 57:27914

    CAS  Google Scholar 

  10. Lin KYA, Yang HT, Lee WD (2015) RSC Adv 99:81330

    Google Scholar 

  11. Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, Johansen TN, Olsen J (2008) J Chem Res Toxicol 21:1107

    Article  CAS  Google Scholar 

  12. Cid-Cerón MM, Guzmán-Hernández DS, Ramírez-Silva MT, Galano A, Romero-Romo M, Palomar-Pardavé M (2016) Electrochim Acta 199:92

    Article  CAS  Google Scholar 

  13. Guzmán-Hernández DS, Martínez-Cruz MA, Ramírez-Silva MT, Romero-Romo M, Corona-Avendaño S, Mendoza-Huizard LH, Palomar-Pardavé M (2016) Anal Methods 8:7868

    Article  CAS  Google Scholar 

  14. Daneshgar P, Norouzi P, Ganjali MR, Dinarvand R, Moosavi-Movahedi AA (2009) Sensors 9:7903

    Article  CAS  PubMed  Google Scholar 

  15. Guzmán-Hernández DS, Cid-Cerón MM, Romero-Romo M, Ramírez-Silva MT, Páez-Hernández ME, Corona-Avendaño S, Palomar-Pardavé M (2017) RSC Adv 9:7909

    Google Scholar 

  16. Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. CRC Press, Boca Raton

    Book  Google Scholar 

  17. Tang W (2003) Curr Drug Metab 4:319

    Article  CAS  PubMed  Google Scholar 

  18. Jörissen J, Speiser B (2015) Preparative electrolysis on the laboratory scale. In: Hammerich O, Speiser B (eds) Organic electrochemistry, vol 5. CRC Press, Boca Raton, p 263

    Google Scholar 

  19. Wolter KD, Stock JT (1978) J Electrochem Soc 125:531

    Article  CAS  Google Scholar 

  20. Digua K, Kauffmann JM, Delplancke JL (1994) Electroanalysis 6:451

    Article  CAS  Google Scholar 

  21. Digua K, Kauffmann J-M, Khodari M (1994) Electroanalysis 6:459

    Article  CAS  Google Scholar 

  22. Larous S, Meniai A-H (2016) Int J Hydrogen Energy 41:10380

    Article  CAS  Google Scholar 

  23. Plakas KV, Karabelas AJ (2016) Global NEST J 18:259

    Article  CAS  Google Scholar 

  24. Altmann J, Ruhl AS, Zietzschmann F, Jekel M (2014) Water Res 55:185

    Article  CAS  PubMed  Google Scholar 

  25. Kamenická B, Weidlich T (2018) Fibres Text 3:37

    Google Scholar 

  26. Shabtai IA, Mishael YG (2016) Environ Sci Technol 50:8246

    Article  CAS  PubMed  Google Scholar 

  27. Šimek M, Mikulášek P, Kalenda P, Weidlich T (2016) Chem Pap 70:470

    Article  Google Scholar 

  28. Moretto LM, Kalcher K (eds) (2014) Environmental analysis by electrochemical sensors and biosensors, vol I and II. Springer, Berlin

    Google Scholar 

  29. Vohlídal J, Julák A, Štulík K (1999) Chemical and analytical tables. Grada Publishing, Prague, p 544

    Google Scholar 

  30. Švancara I, Metelka R, Vytřas K (2005) Piston-driven carbon paste electrode holders for electrochemical measurements. In: Kalcher K, Vytras K (eds) Sensing in electroanalysis. Press Centre, University of Pardubice, Pardubice, p 7

    Google Scholar 

  31. Hach (2018) COD quide preparation. https://www.hach.com/codguide-preparation. Accessed 26 Oct 2018

  32. Hach (2018) AOX photometric determination. https://uk.hach.com/aox-cuvette-test-0-05-3-0-mg-l/product?id=26370291471. Accessed 30 Oct 2018

  33. ISO 9562:2004 Water quality—determination of adsorbable organically bound halogens (AOX). https://www.iso.org/standard/36918.html. Accessed 30 Oct 2018

Download references

Acknowledgements

We are grateful to thank for support by Technology Agency of the Czech Republic, Project No. TH02030200. In addition, authors would like to thank Dr. Tomáš Mikysek, their colleague from the Department of Analytical Chemistry, for some valuable comments concerning the interpretation of the electrode oxidation of diclofenac.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan Švancara or Tomáš Weidlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamenická, B., Bartášková, A., Švancara, I. et al. Applicability of voltammetric determination of diclofenac at carbon paste electrodes to the analysis of aqueous solutions purified by adsorption and/or ionic liquid-based ion exchange. Monatsh Chem 150, 429–437 (2019). https://doi.org/10.1007/s00706-019-2354-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-2354-8

Keywords

Navigation