Skip to main content

Substituent effects on stability, MEP, NBO analysis, and reactivity of 2,2,9,9-tetrahalosilacyclonona-3,5,7-trienylidenes, at density functional theory

Abstract

Cyclonona-3,5,7-trienylidene appears as boat-shaped transition state for having a negative force constant, while its singlet state exhibits less stability than the corresponding triplet state. Succeeding the quest for the largest unsaturated stable carbene-like species, theoretical investigations coupled with suitable isodesmic reactions are used to examine the effects of α,αʹ-tetrahalo groups on the thermodynamic along with kinetic viabilities of nine-membered cyclic silylenes. All the singlet and triplet silylenes appear as boat-shaped minima for having positive force constants on their potential energy surfaces and singlet states emerge as ground state, exhibiting more stability than their corresponding triplet states. The order of stability estimated by singlet (S)–triplet (T) energy separation (ΔES–T = ET − ES) emerges as α,αʹ-tetrahydrocarbene < α,αʹ-tetrahydrosilylene < α,αʹ-tetrafluorosilylene < α,αʹ-tetraiodosilylene < α,αʹ-tetrachlorosilylene < α,αʹ-tetrabromosilylene. This research specifies band gap (ΔEHOMO–LUMO) of scrutinized silylenes with this order. Hence, singlet 2,2,9,9-tetrabromosilacyclonona-3,5,7-trienylidene exists as the most stable species. From both thermodynamic and kinetic points of view, this species is more stable than synthesized silylene by Kira. It shows the highest heat of dehydrogenation through isodesmic reaction. The NBO analysis provides significant evidences for the stability of it through positive hyperconjugation, negative hyperconjugation, as well as mesomeric effects.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kassaee MZ, Zandi H, Haerizade BN, Ghambarian M (2012) Comput Theor Chem 1001:39

    CAS  Google Scholar 

  2. 2.

    Momeni MR, Shakib FA (2011) Organomet 30:5027

    CAS  Google Scholar 

  3. 3.

    Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019) J Phys Org Chem 32:e3956

    Google Scholar 

  4. 4.

    Brück A, Gallego D, Wang W, Irran E, Driess M, Hartwig JF (2012) Angew Chem Int Ed 51:11478

    Google Scholar 

  5. 5.

    Li J, Merkel S, Henn J, Meindl K, Döring A, Roesky HW, Ghadwal RS, Stalke D (2010) Inorg Chem 49:775

    CAS  PubMed  Google Scholar 

  6. 6.

    Yang W, Fu H, Wang H, Chen M, Ding Y, Roesky HW, Jana A (2009) Inorg Chem 48:5058

    CAS  PubMed  Google Scholar 

  7. 7.

    Yamada T, Mawatari A, Tanabe M, Osakada K, Tanase T (2009) Angew Chem 121:576

    Google Scholar 

  8. 8.

    Blom B, Enthaler S, Inoue S, Irran E, Driess M (2013) J Am Chem Soc 135:6703

    CAS  PubMed  Google Scholar 

  9. 9.

    Tan G, Blom B, Gallego D, Driess M (2013) Organometallics 33:363

    Google Scholar 

  10. 10.

    Blom B, Stoelzel M, Driess M (2013) Chem Eur J 19:40

    CAS  PubMed  Google Scholar 

  11. 11.

    Stoelzel M, Präsang C, Blom B, Driess M (2013) Aust J Chem 66:1163

    CAS  Google Scholar 

  12. 12.

    Protchenko AV, Birjkumar KH, Dange D, Schwarz AD, Vidovic D, Jones C, Kaltsoyannis N, Mountford P, Aldridge S (2012) J Am Chem Soc 134:6500

    CAS  PubMed  Google Scholar 

  13. 13.

    Rekken BD, Brown TM, Fettinger JC, Tuononen HM, Power PP (2012) J Am Chem Soc 134:6504

    CAS  PubMed  Google Scholar 

  14. 14.

    Asay M, Inoue S, Driess M (2011) Angew Chem Int Ed 50:9589

    CAS  Google Scholar 

  15. 15.

    Sasamori T, Tokitoh N (2005) In: King RB (ed) Encyclopedia of Inorganic Chemistry II. Wiley, Chichester, p 1698

    Google Scholar 

  16. 16.

    Slipchenko LV, Krylov AI (2002) J Chem Phys 117:4694

    CAS  Google Scholar 

  17. 17.

    Denk M, Lennon R, Hayashi R, West R, Haaland A, Belyakov H, Verne P, Wagner M, Metzler N (1994) J Am Chem Soc 116:2691

    CAS  Google Scholar 

  18. 18.

    Gehrhus B, Lappert MF, Heinicke J, Boese R, Bläser D (1995) J Chem Soc Chem Commun 19:1931–1932

    Google Scholar 

  19. 19.

    West R, Denk M (1996) Pure Appl Chem 68:785

    CAS  Google Scholar 

  20. 20.

    Heinicke J, Oprea A, Kindermann MK, Karpati T, Nyulaszi L, Veszpremi T, Hitchcock PB, Lappert MF, Maciejewski H (1998) Organometallics 17:5599

    Google Scholar 

  21. 21.

    Kira M, Ishida S, Iwamoto T, Kabuto C (1999) J Am Chem Soc 121:9722

    CAS  Google Scholar 

  22. 22.

    Driess M, Yao S, Brym M, Wüllen C, Lentz D (2006) J Am Chem Soc 128:9628

    CAS  PubMed  Google Scholar 

  23. 23.

    Kassaee MZ, Koohi M (2013) J Phys Org Chem 26:540

    CAS  Google Scholar 

  24. 24.

    Kassaee MZ, Koohi M, Mohammadi R, Ghavami M (2013) J Phys Org Chem 26:908

    CAS  Google Scholar 

  25. 25.

    Koohi M, Kassaee MZ, Haerizade BN, Ghavami M, Ashenagar S (2015) J Phys Org Chem 28:514

    CAS  Google Scholar 

  26. 26.

    Naderi F, Bagheri R, Yari M (2013) J Phys Theor Chem 9:281

    Google Scholar 

  27. 27.

    Mekky ABH, Elhaes HG, El-Okr MM, Ibrahim MA (2015) J Nanomater Mol Nanotechnol 4:2

    Google Scholar 

  28. 28.

    Mizuhata Y, Sasamori T, Tokitoh N (2009) Chem Rev 109:3479

    CAS  PubMed  Google Scholar 

  29. 29.

    Govindarajan M, Karabacak M, Suvitha A, Periandy S (2012) Spectrochim Acta A Mol Biomol Spectrosc 89:137

    CAS  PubMed  Google Scholar 

  30. 30.

    Ruiz-Espinoza A, Ramos E, Salcedo R (2013) Comput Theor Chem 1016:36

    CAS  Google Scholar 

  31. 31.

    Dheivamalar S, Sugi L, Ambigai K (2016) Comput Chem 4:17

    CAS  Google Scholar 

  32. 32.

    Dheivamalar S, Sugi L (2015) Spectrochim Acta A Mol Biomol Spectrosc 151:687

    CAS  PubMed  Google Scholar 

  33. 33.

    Hoffmann R, Schleyer PR, Schaefer HF (2008) Angew Chem Int Ed 47:7164

    Google Scholar 

  34. 34.

    Nemirowski A (2007) Schreiner PR). J Org Chem 72:9533–9540

    CAS  PubMed  Google Scholar 

  35. 35.

    Kassaee MZ, Koohi M (2005) J Mol Struct (THEOCHEM) 755:91

    CAS  Google Scholar 

  36. 36.

    Kassaee MZ, Koohi M, Arshadi S (2005) J Mol Struct (THEOCHEM) 724:61

    CAS  Google Scholar 

  37. 37.

    Kassaee MZ, Koohi M (2007) J Mol Struct (THEOCHEM) 815:21

    CAS  Google Scholar 

  38. 38.

    Kassaee MZ, Koohi M (2007) J Mol Struct (THEOCHEM) 810:53

    CAS  Google Scholar 

  39. 39.

    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  40. 40.

    Sobolewski AL, Domcke W (2002) J Phys Chem A 106:4158

    CAS  Google Scholar 

  41. 41.

    Becke AD (1988) Phys Rev A 38:3098

    CAS  Google Scholar 

  42. 42.

    Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  43. 43.

    Becke AD (1996) J Chem Phys 104:1040

    CAS  Google Scholar 

  44. 44.

    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  45. 45.

    Krishna R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

    Google Scholar 

  46. 46.

    Zhao Y, Truhlar DG (2008) Theor Chem Account 120:215

    CAS  Google Scholar 

  47. 47.

    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    CAS  Google Scholar 

  48. 48.

    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PR (1983) J Comput Chem 4:294

    CAS  Google Scholar 

  49. 49.

    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    CAS  Google Scholar 

  50. 50.

    Schlegel HB, Frisch MJ (1995) Int J Quantum Chem 54:83

    CAS  Google Scholar 

  51. 51.

    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796

    CAS  Google Scholar 

  52. 52.

    Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York

    Google Scholar 

  53. 53.

    Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic structure Methods. Gaussian Inc, Pittsburgh

    Google Scholar 

  54. 54.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1

  55. 55.

    Weinhold F, Glendening ED, NBO Version 7.0

  56. 56.

    Weinhold F (2012) J Comput Chem 33:2363

    CAS  PubMed  Google Scholar 

  57. 57.

    Glendening ED, Landis CR, Weinhold F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:1

    CAS  Google Scholar 

  58. 58.

    Domingo LR, Pérez P (2011) Org Biomol Chem 9:7168

    CAS  PubMed  Google Scholar 

  59. 59.

    Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615

    CAS  PubMed  Google Scholar 

  60. 60.

    Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    CAS  Google Scholar 

  61. 61.

    Pearson RG (1989) J Org Chem 54:1423

    CAS  Google Scholar 

  62. 62.

    Chattaraj PK, Giri S (2007) J Phys Chem A 111:11116

    CAS  PubMed  Google Scholar 

  63. 63.

    Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2007) J Phys Chem A 111:1358

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is financially supported by Technical and Vocational University of Tehran, Dr. Shariaty College, Tehran, and North Tehran Branch, Islamic Azad University, Tehran, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hajieh Bastami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

706_2019_2537_MOESM1_ESM.docx

Supplementary material 1 The calculated sum of electronic and thermal enthalpy (Htot), sum of electronic and thermal free energy (Gtot), changes of enthalpy (ΔHS-T), changes of free energy (ΔGS-T), polarizability (αxx, αyy, αzz, and <α>), nucleophilicity index (N), global electrophilicity (ω), chemical potential (μ), global hardness (η), electronegativity (χ), global softness (S), maximum electronic charge (ΔNmax), the second order perturbation theory analysis of Fock Matrix in NBO basis including stabilization energies E(2) corresponding to the most important charge transfer interactions (donor-acceptor), C-D-C angle (D being the divalent, carbene-like atom), bond lengths, XYZ Cartesian coordinates, MEP maps, and shapes of selected frontier molecular orbitals for scrutinized silylenes (27 pages) (DOCX 34341 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koohi, M., Bastami, H. Substituent effects on stability, MEP, NBO analysis, and reactivity of 2,2,9,9-tetrahalosilacyclonona-3,5,7-trienylidenes, at density functional theory. Monatsh Chem 151, 11–23 (2020). https://doi.org/10.1007/s00706-019-02537-w

Download citation

Keywords

  • Silylene
  • Stability
  • Carbene-like species
  • Isodesmic reaction