Skip to main content
Log in

A catalyst coated electrode for electrochemical formaldehyde oxidation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Thermally prepared catalytic coatings on a titanium substrate were composed of a mixture of nanocrystals of metallic Pt and RuO2 of rutile structure and used for electrooxidation of formaldehyde. The size of the RuO2 nanocrystals increased, whereas those of Pt decreased with increasing the content of RuO2 in the mixture. At more positive potentials, the maximum catalytic activities showed the coatings with lower content of RuO2. Mechanism of formaldehyde oxidation was derived to show two reaction pathways. In the first one, H2C(OH)2 was directly oxidized to CO2, whereas COad was formed in the latter. COad is strongly adsorbed on Pt atoms, which causes blocking of these atoms and thus, preventing direct dehydrogenation of H2C(OH)2 to CO2. The overall catalytic effect of the mixture of nanocrystals was caused by the bifunctional mechanism. Thus, the Ru atoms formed the oxy species at more negative potentials than Pt. These oxy species oxidized the COad intermediates, bound to adjacent Pt atoms and accordingly, discharged them for dehydrogenation of new molecules of H2C(OH)2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu X, Pickup PG (2008) J Power Sources 182:124

    CAS  Google Scholar 

  2. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) J Power Sources 111:83

    CAS  Google Scholar 

  3. Korzeniewski C, Childers CL (1998) J Phys Chem B 102:489

    CAS  Google Scholar 

  4. Guthrie JP (1975) Can J Chem 53:898

    CAS  Google Scholar 

  5. Spasojević MD, Adžić RR, Despić AR (1980) J Electroanal Chem 109:261

    Google Scholar 

  6. Adžić RR, Hofman MI, Dražić DM (1980) J Electroanal Chem 110:361

    Google Scholar 

  7. Kazarinov VE, Vassiliev YB, Andreev VN, Kuliev SA (1981) J Electroanal Chem 123:345

    CAS  Google Scholar 

  8. Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1994) J Electroanal Chem 370:241

    CAS  Google Scholar 

  9. Olivi P, Bulhões LOS, Léger J-M, Hahn F, Beden B, Lamy C (1996) Electrochim Acta 41:927

    CAS  Google Scholar 

  10. Koper MTM, Hachkar M, Beden B (1996) J Chem Soc Faraday Trans 92:3975

    CAS  Google Scholar 

  11. Miki A, Ye S, Senzaki T, Osawa M (2004) J Electroanal Chem 563:23

    CAS  Google Scholar 

  12. Samjeské G, Miki A, Osawa M (2007) J Phys Chem C 111:15074

    Google Scholar 

  13. Avramov-Ivic M, Adzic RR, Bewick A, Razaq M (1988) J Electroanal Chem, Interfacial. Electrochem 240:161

    CAS  Google Scholar 

  14. Kitamura F, Takahashi M, Ito M (1986) Chem Phys Lett 123:273

    CAS  Google Scholar 

  15. Nishimura K, Ohnishi R, Kunimatsu K, Enyo M (1989) J Electroanal Chem, Interfacial. Electrochem 258:219

    CAS  Google Scholar 

  16. Sun SG, Lu GQ, Tian ZW (1995) J Electroanal Chem 393:97

    Google Scholar 

  17. Bełtowska-Brzezinska M, Heitbaum J, Vielstich W (1985) Electrochim Acta 30:1465

    Google Scholar 

  18. Xu Y, Schell M (1990) J Phys Chem 94:7137

    CAS  Google Scholar 

  19. Nakabayashi S, Kira A (1992) J Phys Chem 96:1021

    CAS  Google Scholar 

  20. Batista EA, Iwasita T (2006) Langmuir 22:7912

    CAS  PubMed  Google Scholar 

  21. Osawa M (2001) Surface-Enhanced Infrared Absorption. In: Kawata S (ed), Near-Field Optics and Surface Plasmon Polaritons. Top. Appl. Phys, vol 81. Springer, Berlin, p 163.

  22. Zhang Y, Zhang M, Cai Z, Chen M, Cheng F (2012) Electrochim Acta 68:172

    CAS  Google Scholar 

  23. Guo Y, Xu YT, Gao GH, Wang T, Zhao B, Fu XZ, Sun R, Wong CP (2015) Catal Commun 58:40

    CAS  Google Scholar 

  24. Yan RW, Jin BK (2013) Chin Chem Lett 24:159

    CAS  Google Scholar 

  25. Nellaiappan S, Kumar AS, Nisha S, Pillai KC (2017) Electrochim Acta 249:227

    CAS  Google Scholar 

  26. Bansal V, Li V, O’Mullane AP, Bhargava SK (2010) CrystEngComm 12:4280

    CAS  Google Scholar 

  27. Yu Y, Jia M, Tian H, Hu J (2014) J Power Sources 267:123

    CAS  Google Scholar 

  28. Li Z, Lu X, Li B, Bai L, Wang Q (2015) ECS Electrochem Lett 4:H24

    CAS  Google Scholar 

  29. Trivedi D, Crosse J, Tanti J, Cass AJ, Toghill KE (2018) Sens Actuators B 270:298

    Google Scholar 

  30. Hassaninejad-Darzi SK (2014) J Electroceram 33:252

    CAS  Google Scholar 

  31. Hasanzadeh M, Khalilzadeh B, Shadjou N, Karim-Nezhad G, Saghatforoush L, Kazeman I, Abnosi MH (2010) Electroanalysis 22:168

    CAS  Google Scholar 

  32. Yang L, Zhao F, Xiao F, Zeng B (2011) Anal Bioanal Electrochem 3:175

    Google Scholar 

  33. Raoof JB, Hosseini SR, Ojani R, Aghajani S (2015) J Mol Liq 204:106

    CAS  Google Scholar 

  34. Safavi A, Momeni S, Tohidi M (2012) Electroanalysis 24:1981

    CAS  Google Scholar 

  35. Safavi A, Farjami F (2011) Electroanalysis 23:1842

    CAS  Google Scholar 

  36. Miao F, Tao B (2013) J Nanosci Nanotechnol 13:3104

    CAS  PubMed  Google Scholar 

  37. de Lima RB, Massafera MP, Batista EA, Iwasita T (2007) J Electroanal Chem 603:142

    Google Scholar 

  38. Touny AH, Tammam RH, Saleh MM (2018) Appl Catal B: Environ 224:1017

    CAS  Google Scholar 

  39. Momeni S, Sedaghati F (2018) Microchem J 143:64

    CAS  Google Scholar 

  40. Spasojevic M, Ribic-Zelenovic L, Spasojevic M, Trisovic T (2019) Russ J Electrochem 55:1350

    Google Scholar 

  41. Burke LD, O'Neill JF (1979) J Electroanal Chem, Interfacial. Electrochem 101:341

    CAS  Google Scholar 

  42. Franaszczuk K, Sobkowski J (1992) J Electroanal Chem 327:235

    CAS  Google Scholar 

  43. Spasojević MD, Krstajić NV, Jakšić MM (1987) J Mol Catal 40:311

    Google Scholar 

  44. Spasojevic M, Ribic-Zelenovic L, Spasojevic P (2012) Ceram Int 38:5827

    CAS  Google Scholar 

  45. Spasojevic M, Krstajic N, Spasojevic P, Ribic-Zelenovic L (2015) Chem Eng Res Des 93:591

    CAS  Google Scholar 

  46. Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1977) J Phys Chem 81:2271

    CAS  Google Scholar 

  47. Ticanelli E, Beery JG, Paffett MT, Gottesfeld S (1989) J Electroanal Chem, Interfacial. Electrochem 258:61

    CAS  Google Scholar 

  48. Capon A, Parson R (1973) J Electroanal Chem, Interfacial. Electrochem. 44:1

    CAS  Google Scholar 

  49. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) J Phys Chem B 110:23489

    CAS  PubMed  Google Scholar 

  50. Rigsby MA, Zhou WP, Lewera A, Duong HT, Bagus PS, Jaegermann W, Hunger R, Wieckowski A (2008) J Phys Chem C 112:15595

    CAS  Google Scholar 

  51. Garrick TR, Diao W, Tengco JM, Stach EA, Senanayake SD, Chen DA, Monnier JR, Weidner JW (2016) Electrochim Acta 195:106

    CAS  Google Scholar 

  52. Tian M, Shi S, Shen Y, Yin H (2019) Electrochim Acta 293:390

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Ministry of Education and Science of the Republic of Serbia through project Ref. No. 172057

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Spasojevic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spasojevic, M., Spasojevic, M. & Ribic-Zelenovic, L. A catalyst coated electrode for electrochemical formaldehyde oxidation. Monatsh Chem 151, 33–43 (2020). https://doi.org/10.1007/s00706-019-02533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02533-0

Keywords

Navigation