Skip to main content
Log in

Peroxo–tungstate(VI) complexes: syntheses, characterization, reactivity, and DFT studies

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Three new oxodiperoxo–tungsten(VI) complexes containing benzene core carboxylic acids, viz., benzoic acid, 2-chlorobenzoic acid, and 3-aminobenzoic acid as co-ligands have been synthesized from reaction of Na2WO6H4, 30% H2O2 and the corresponding co-ligands in aqueous medium. The compounds have been comprehensively characterized by elemental analyses, FT-IR, 1H NMR, UV–Vis spectral studies as well as by mass spectrometric and TGA analyses. The infrared spectra suggest occurrence of terminally bonded W=O as well as triangular bidentate peroxo groups (C2v) and monodentate carboxylate group bound to the WO4+ center. The mass spectra of the compounds are in good agreement with proposed molecular formulations. Thermogravimetric analyses indicate the existence of both lattice and coordinated water molecules in the complexes. Density functional theory (DFT) calculations were used to compute the frequencies of relevant vibrational modes, electronic properties and also to investigate structure of the compounds. Compound potassium(aquo)(2-chlorobenzoato)oxodiperoxo–tungstate(VI)dihydrate acts as an oxidant for bromide ion in aqueous phase bromination of chosen organic substrates to their corresponding bromo-organics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsitsias V, Maniatakou A, Raptopoulou C, Karaliota A (2009) Polyhedron 28:3400

    Article  CAS  Google Scholar 

  2. Butler A, Clague MJ, Meister GE (1994) Chem Rev 94:625

    Article  CAS  Google Scholar 

  3. Mimoun M, Mignard P, Brechot P, Saussine L (1986) J Am Chem Soc 108:3711

    Article  CAS  Google Scholar 

  4. Mizuno N, Yamaguchi K, Kamata K (2005) Coord Chem Rev 249:1944

    Article  CAS  Google Scholar 

  5. Santos ICMS, Almeida Paz FA, Simoes MMQ, Neves MGPMS, Cavaleiro JAS, Klinowski J, Cavaleiro AMV (2008) Appl Catal A 351:166 (references therein)

    Article  CAS  Google Scholar 

  6. Conte V, Floris B (2011) J Chem Soc Dalton Trans 73:1419 (references therein)

    Article  Google Scholar 

  7. Gogoi SR, Boruah JJ, Sengupta G, Saikia G, Ahmed K, Bania KK, Islam NS (2015) Catal Sci Technol 5:595

    Article  CAS  Google Scholar 

  8. Ma XT, Xing N, Yan ZD, Zhang XX, Wu Q, Xing YH (2015) New J Chem 39:1067

    Article  CAS  Google Scholar 

  9. Kenneth S, Kirshenbaum KS, Sharpless KB (1985) J Org Chem 50:1979

    Article  Google Scholar 

  10. Bortolini O, Furia FD, Modena G, Seragila R (1985) J Org Chem 50:2688

    Article  CAS  Google Scholar 

  11. Dickman MH, Pope MT (1994) Chem Rev 94:569

    Article  CAS  Google Scholar 

  12. Gresley NM, Griffith WP, Laemnael AC, Nogeira HIS, Parkin BC (1997) J Mol Catal A 117:185

    Article  CAS  Google Scholar 

  13. Maiti SK, Banerjee S, Mukherjee AK, Malik KMA, Bhattacharya R (2005) New J Chem 29:554

    Article  CAS  Google Scholar 

  14. Jimtaisong A, Luck RL (2006) Inorg Chem 45:10391

    Article  CAS  Google Scholar 

  15. Le J, Elberg G, Gelfel D, Shechter Y (1995) Biochemistry 34:6218

    Article  Google Scholar 

  16. Rao AVS, Islam NS, RamaSarma T (1997) Arch Biochem Biophys 342:289

    Article  CAS  Google Scholar 

  17. Sels B, Devas D, Burtinx M, Pierard F, Jacobs P (1999) Nature (London) 400:855

    Article  CAS  Google Scholar 

  18. Bora U, Choudhury MK, Dey D, Dhar SS (2001) Pure Apple Chem 73:93

    Article  CAS  Google Scholar 

  19. Burke A (2008) J Coord Chem Rev 252:170

    Article  CAS  Google Scholar 

  20. Das N, Chowdhury S, Dutta Purkayastha RN (2017) J Chin Chem Soc 64:43

    Article  CAS  Google Scholar 

  21. Clague MJ, Butler A (1995) J Am Chem Soc 117:3475

    Article  CAS  Google Scholar 

  22. Badetti E, Romano F, Marchio L, Taskesenlioglu S, Dastan A, Zonta C, Lcini G (2016) Dalton Trans 45:14603 (references therein)

    Article  CAS  Google Scholar 

  23. Sels BF, Devis DE, Jacobs PA (2003) J Catal 216:288

    Article  CAS  Google Scholar 

  24. Maurya MR, Kumar U, Manikandan P (2006) Dalton Trans 29:3561

    Article  Google Scholar 

  25. Butler A, Walker JV (1993) Chem Rev 93:1937

    Article  CAS  Google Scholar 

  26. Clark JH, Ross JC, Macquarrie DJ, Barlow SJ, Bastock TW (1997) Chem Commun 13:1203

    Article  Google Scholar 

  27. Bhattacharjee M, Choudhury MK, Dutta Purkayastha RN (1986) Inorg Chem 25:2354

    Article  CAS  Google Scholar 

  28. Tamami B, Yeganeh H (1999) Eur Polym J 35:1445

    Article  CAS  Google Scholar 

  29. Kalita D, Sarmah S, Das SP, Baishya D, Patowary A, Baruah S, Islam NS (2008) React Funct Polym 68:876

    Article  CAS  Google Scholar 

  30. Gabriel C, Kaliva M, Vanetis J, Baran P, Rodriguez-Escudero I, Voyiatzis G, Zervou M, Salifoglou A (2009) Inorg Chem 48:476

    Article  CAS  Google Scholar 

  31. Bora U, Bose G, Choudhury MK, Dhar SS, Gopinath R, Khan AT, Patel BK (2000) Org Lett 2:247

    Article  CAS  Google Scholar 

  32. Landaeta VR, Rodriguez-Lugo RE (2015) Inorg Chim Acta 431:21

    Article  CAS  Google Scholar 

  33. Dengel AC, Griffith WP, Powell RD, Skapski AC (1987) J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9870000991

    Article  Google Scholar 

  34. Djordjevic C (1982) Chem Br 18:554

    CAS  Google Scholar 

  35. Campbell NJ, Dengal AC, Griffith WP (1989) Polyhedron 8:1379

    Article  CAS  Google Scholar 

  36. Griffith WP (1963) J Chem Soc 5345

  37. Griffith WP (1964) J Chem Soc 5248

  38. Gubelmann MH, Williams AF (1983) Structure and bonding. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  39. Nakamoto K (2008) Infrared and Raman Spectra of Inorganic and coordination compounds, 6th edn. Wiley Interscience, London

    Book  Google Scholar 

  40. Deacon GB, Philips RJ (1980) Coord Chem Rev 33:227

    Article  CAS  Google Scholar 

  41. Yang CT, Vetrichelvan M, Yang X, Moubakari B, Murray KS, Vital JJ (2004) J Chem Soc Dalton Trans 113

  42. Connor JA, Ebsworth EAV (1964) Adv Inorg Chem Radio Chem 6:279

    CAS  Google Scholar 

  43. Nath M, Yadav R, Eng G, Musingarimi P (1999) Appl Organomet Chem 13:29

    Article  CAS  Google Scholar 

  44. Girasolo MA, Rubino S, Portanova P, Calvaruso G, Ruisi G, Stocco G (2010) J Organomet Chem 695:609

    Article  Google Scholar 

  45. Valentin CD, Gisdakis P, Yudanov IV, Rösch N (2000) J Org Chem 65:2996

    Article  Google Scholar 

  46. Maiti SK, Malik KMA, Bhattacharyya R (2004) Inorg Chem Commun 7:823

    Article  CAS  Google Scholar 

  47. Badetti E, Romano F, Marchiò L, Taşkesenlioğlu S, Daştan A, Zonta C, Licini G (2016) Dalton Trans 45:14603

    Article  CAS  Google Scholar 

  48. Sergienko VS (2008) Crystallogr Rep 53:22

    Article  Google Scholar 

  49. Kamata K, Kuzuya S, Uehara K, Yamaguchi S, Mizuno N (2007) Inorg Chem 46:3768

    Article  CAS  Google Scholar 

  50. Santos ICMS, Paz FAA, Simões MMQ, Neves MGPMS, Cavaleiro JAS, Klinowski J, Cavaleiro AMV (2008) Appl Catal A: Gen 351:166

    Article  CAS  Google Scholar 

  51. Sundaraganesan N, Joshua BD, Radjakoumar T (2009) Indian J Pure Appl Phys 47:248

    CAS  Google Scholar 

  52. Westland AD, Haque F, Bouchard JM (1980) Inorg Chem 19:2255

    Article  CAS  Google Scholar 

  53. Campbell NJ, Dengel AC, Edwards CJ, Griffith WP (1989) J Chem Soc Dalton Trans 1989:1203

    Article  Google Scholar 

  54. Saha P, Naskar J, Bhattacharya A, Ganguly R, Saha B, Chowdhury S (2016) J Coord Chem 69:303

    Article  CAS  Google Scholar 

  55. Sharma M, Sheikh HN, Pathania MS, Kalsotra BL (2008) J Coord Chem 61:426

    Article  CAS  Google Scholar 

  56. Vogel AI (1962) Textbook of quantitative inorganic analysis. Longmans, Green, London, p 566

    Google Scholar 

  57. Vogel AI (1962) Textbook of Quantitative Inorganic Analysis. Longmans, Green, London, p 295, 325

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford, CT

  59. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  60. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  61. Dill JD, Pople JA (1975) J Chem Phys 62:2921

    Article  CAS  Google Scholar 

  62. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  63. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Tripura University for providing the infrastructure facilities; Prof. A. Saikia, Department of Chemistry, I.I.T Guwahati, for cooperation in recording of mass spectra. N. D is grateful to Tripura University for award of research fellowship (No. F.TU/ REG/Ph.D/(Admn)/01/12) RET (UGC, New Delhi, India, sponsored). Authors are thankful to DST, Govt. of India, for providing 400 MHz NMR spectrometer to Tripura University under Fist program (SR/FST/CSI-263/2015). We are thankful to esteemed reviewers for helpful comments at the stage of revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranendra N. Dutta Purkayastha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

706_2019_2435_MOESM1_ESM.docx

Experimental IR spectra, UV-Vis spectra, mass spectra, TGA plot, and NMR spectra, Table for selected optimized bond angles and bond lengths. Supplementary file1 (DOCX 3337 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Chowdhury, S. & Purkayastha, R.N.D. Peroxo–tungstate(VI) complexes: syntheses, characterization, reactivity, and DFT studies. Monatsh Chem 150, 1255–1266 (2019). https://doi.org/10.1007/s00706-019-02435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02435-1

Keywords

Navigation