Skip to main content
Log in

Electrochemical detection of 8-hydroxyguanine using screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The paper presents the findings of an optimization and validation results of electrochemical detection of 8-hydroxyguanine, a major marker of oxidative stress, using disposable screen-printed carbon electrode (SPCE) modified with carboxy-functionalized multi-walled carbon nanotubes (MWCNTs-COOH). Several types of bare and modified SPCEs were tested and modification with MWCNTs-COOH was found superior in terms of measured current response, level of background currents, and sensitivity in oxidation of 8-hydroxyguanine. The effect of pH and composition of supporting electrolyte on current response and peak potential were also evaluated. Validation parameters were calculated for optimum pH 7 of 0.01 mol dm−3 phosphate buffer. The sensor showed the highest sensitivity of 0.0625 µA dm3 μmol−1 within the linear range 0.3–12 μmol dm−3 with a limit of detection as low as 0.57 μmol dm−3. Extended linear range 0.3–240 μmol dm−3 is feasible with a sensitivity of 0.0523 µA dm3 μmol−1. Intra-day and inter-day assays within 3 days were performed to verify the repeatability of modified screen-printed carbon sensors. Finally, the sensor was utilized for electrochemical monitoring of stability of 8-hydroxyguanine when stored in room temperature, in the refrigerator, or frozen and thawed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Salmon TB, Evert BA, Song B, Doetsch PW (2004) Nucleic Acids Res 32:3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free Radic Biol Med 32:1102

    Article  CAS  PubMed  Google Scholar 

  3. Breen AP, Murphy JA (1995) Free Radic Biol Med 18:1033

    Article  CAS  PubMed  Google Scholar 

  4. Dizdaroglu M, Jaruga P (2012) Free Radic Res 46:382

    Article  CAS  PubMed  Google Scholar 

  5. Goyal RN, Bishnoi S (2010) Biosens Bioelectron 26:463

    Article  CAS  PubMed  Google Scholar 

  6. Kawai K, Kasai H, Li YS, Kawasaki Y, Watanabe S, Ohta M, Yamato H (2018) Genes Environ 40:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu AL, Li X, Gu Y, Wright PM, Chang DY (2001) Cell Biochem Biophys 35:141

    Article  CAS  PubMed  Google Scholar 

  8. Bishnoi S, Goyal RN, Shim YB (2014) Bioelectrochemistry 99:24

    Article  CAS  PubMed  Google Scholar 

  9. Loft S, Svoboda P, Kawai K, Kasai H, Sørensen M, Tjønneland A, Vogel U, Møller P, Overvad K, Raaschou-Nielsen O (2012) Free Radic Biol Med 52:167

    Article  CAS  PubMed  Google Scholar 

  10. Dizdaroglu M (1985) Biochemistry 24:4476

    Article  CAS  PubMed  Google Scholar 

  11. Hu CW, Cooke MS, Tsai YH, Chao MR (2015) Arch Toxicol 89:201

    Article  CAS  PubMed  Google Scholar 

  12. Andreoli R, Manini P, Palma GD, Alinovi R, Goldoni M, Niessen WM, Mutti A (2010) Biomarkers 15:221

    Article  CAS  PubMed  Google Scholar 

  13. Zitka O, Krizkova S, Skalickova S, Kopel P, Babula P, Adam V, Kizek R (2013) Comb Chem High Throughput Screen 16:130

    CAS  PubMed  Google Scholar 

  14. Oliveira Brett AM, Piedade JAP, Serrano SHP (2000) Electroanalysis 12:969

    Article  Google Scholar 

  15. Rebelo I, Piedade JAP, Oliveira Brett AM (2004) Bioelectrochemistry 63:267

    Article  CAS  PubMed  Google Scholar 

  16. Bernalte E, Carroll M, Banks CE (2017) Sens Actuators B Chem 247:896

    Article  CAS  Google Scholar 

  17. Bioanalytical method validation: guidance for industry (2018) https://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf. Accessed 13 Dec 2018

Download references

Acknowledgements

This work was supported by the Ministry of Defense of the Czech Republic (Long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences, University of Defense) and by the Ministry of Education, Youth and Sport of the Czech Republic (Specific research project no: FVZ 201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Metelka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeličová, M., Metelka, R., Pejchal, J. et al. Electrochemical detection of 8-hydroxyguanine using screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes. Monatsh Chem 150, 1187–1193 (2019). https://doi.org/10.1007/s00706-019-02433-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02433-3

Keywords

Navigation