Skip to main content
Log in

Ternary platinides Sr4In13Pt9 and Eu5In9Pt7

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Sr4In13Pt9 and Eu5In9Pt7 were synthesized by induction melting of the pure elements in glassy carbon crucibles. Both compounds were characterized through their X-ray powder patterns and the structures were refined from X-ray single crystal diffractometer data: Ho4Ir13Ge9 type, Pmmn, a = 439.17(5) pm, b = 1232.2(2) pm, c = 2135.3(3) pm, wR2 = 0.0550, 3598 F2 values, 88 variables for Sr4In13Pt9 and Sc5Pt9Si7 type, \(P{\bar{6}}\), a = 1116.7(2) pm, c = 435.86(7) pm, wR2 = 0.0379, 1358 F2 values, 45 variables for Eu5In9Pt7. The platinum and indium atoms form covalently bonded [In13Pt9] and [In9Pt7] polyanionic networks which exhibit larger tunnels for the strontium and europium cations. They bind to these networks through electrostatic interactions as is evident from shorter Sr–Pt (339–353 pm) and Eu–Pt (298–334 pm) contacts. Temperature-dependent magnetic susceptibility measurements of Eu5In9Pt7 show Curie–Weiss behavior with an experimental magnetic moment of 7.51(1) µB/Eu, indicating stable divalent europium. This is corroborated by 151Eu Mössbauer spectroscopy. Eu5In9Pt7 orders antiferromagnetically at 11.6(5) K and shows a metamagnetic transition in the 2.5 K isotherm at a critical field of 2 kOe.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rohrer GS (2001) Structure and Bonding in Crystalline Materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Müller U (2007) Inorganic Structural Chemistry, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  3. Juza R, Hahn H (1938) Z Anorg Allg Chem 239:282

    Article  CAS  Google Scholar 

  4. Fischer D, Jansen M (2002) Angew Chem 114:1831

    Article  Google Scholar 

  5. Holmberg B (1962) Acta Chem Scand 16:1255

    Article  CAS  Google Scholar 

  6. Schuster JC, Bauer J (1984) J Solid State Chem 53:260

    Article  CAS  Google Scholar 

  7. Reuter B, Hardel K (1961) Naturwissenschaften 48:161

    Article  CAS  Google Scholar 

  8. Brylak M, Jeitschko W (1994) Z Naturforsch 49B:747

    Article  Google Scholar 

  9. Gladyshevskii RE, Cenzual K, Zhao JT, Parthé E (1992) Acta Crystallogr C 48:221

    Article  Google Scholar 

  10. Ganglberger E (1968) Monatsh Chem 99:557

    Article  CAS  Google Scholar 

  11. Kubel F, Bill H, Hagemann H (1999) Z Anorg Allg Chem 625:643

    Article  CAS  Google Scholar 

  12. Jeitschko W, Reinbold EJ (1985) Z Naturforsch 40B:900

    Article  CAS  Google Scholar 

  13. Kubel F, Hagemann H, Bill H (1996) Z Anorg Allg Chem 622:343

    Article  CAS  Google Scholar 

  14. Parthé E, Gelato LM (1984) Acta Crystallogr A 40:169

    Article  Google Scholar 

  15. Gelato LM, Parthé E (1987) J Appl Crystallogr 20:139

    Article  Google Scholar 

  16. Hoffmann R-D, Pöttgen R, Rosenhahn C, Mosel BD, Künnen B, Kotzyba G (1999) J Solid State Chem 145:283

    Article  CAS  Google Scholar 

  17. Gangelberger E (1968) Monatsh Chem 99:566

    Article  Google Scholar 

  18. Hoffmann R-D, Pöttgen R (1999) Z Anorg Allg Chem 625:994

    Article  CAS  Google Scholar 

  19. Meisen U, Jeitschko W (1984) J Less-Common Met 102:127

    Article  CAS  Google Scholar 

  20. Lorenz P, Jung W (2009) Z Anorg Allg Chem 635:920

    Article  CAS  Google Scholar 

  21. Sologub OL, Prots YuM, Salamakha PS, Pecharsky VK, Bodak OI (1993) J Alloys Compd 202:13

    Article  CAS  Google Scholar 

  22. Parthé E, Gelato L, Chabot B, Penzo M, Cenzual K, Gladyshevskii R (1993) TYPIX—standardized data and crystal chemical characterization of inorganic structure types. Gmelin handbook of inorganic and organometallic chemistry, 8th edn. Springer, Berlin

    Google Scholar 

  23. Kuz’ma Y, Chykhrij S (1996) Phosphides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the Physics and Chemistry of Rare Earths, vol 23. Elsevier Science, Amsterdam, p 285

    Google Scholar 

  24. Prots YM, Jeitschko W (1998) Inorg Chem 37:5431

    Article  CAS  PubMed  Google Scholar 

  25. Pöttgen R, Hönle W, von Schnering HG (2005) Phosphides: Solid State Chemistry. In: King RB (ed) Encyclopedia of Inorganic Chemistry, vol VII, 2nd edn. Wiley, New York, p 4255

    Google Scholar 

  26. Dhahri E, Fourati N (1998) Ann Chim Sci Mat 23:195

    Article  CAS  Google Scholar 

  27. Budnyk S, Prots Yu, Schmidt M, Schnelle W, Kuz’ma Y, Grin Y (2004) Z Anorg Allg Chem 630:1062

    Article  CAS  Google Scholar 

  28. Jeitschko W, Meisen U, Reinbold EJ (2012) Z Anorg Allg Chem 638:770

    Article  CAS  Google Scholar 

  29. Stoyko SS, Ramachandran KK, Scott Mullen C, Mar A (2013) Inorg Chem 52:1040

    Article  CAS  PubMed  Google Scholar 

  30. Zhu M, Tao X-T, Xia S-Q (2016) Inorg Chem Front 3:1264

    Article  CAS  Google Scholar 

  31. Verniere A, Lejay P, Bordet P, Chenavas J, Tholence JL, Boucherle JX, Keller N (1995) J Alloys Compd 218:197

    Article  CAS  Google Scholar 

  32. Yarema M, Zaremba O, Gladyshevskii R, Hlukhyy V, Fässler TF (2012) J Solid State Chem 196:72

    Article  CAS  Google Scholar 

  33. Palasyuk A, Dai J-C, Corbett JD (2008) Inorg Chem 47:3128

    Article  CAS  PubMed  Google Scholar 

  34. Jeitschko W, Jakubowski-Ripke U, Albering J (2011) Z Anorg Allg Chem 637:895

    Article  CAS  Google Scholar 

  35. Emsley J (1999) The Elements. Oxford University Press, Oxford

    Google Scholar 

  36. Hoffmann R-D, Rodewald UCH, Pöttgen R (1999) Z Naturforsch 54B:38

    Article  Google Scholar 

  37. Galadzhun YV, Zaremba VI, Piotrowski H, Mayer P, Hoffmann R-D, Pöttgen R (2000) Z Naturforsch 55B:1025

    Article  Google Scholar 

  38. Donohue J (1974) The Structures of the Elements. Wiley, New York

    Google Scholar 

  39. Muts I, Zaremba VI, Baran VV, Pöttgen R (2007) Z Naturforsch 62B:1407

    Article  Google Scholar 

  40. Pöttgen R, Johrendt D (2014) Intermetallics. De Gruyter, Berlin

    Book  Google Scholar 

  41. Lueken H (1999) Magnetochemie. Teubner, Leipzig

    Book  Google Scholar 

  42. Heletta L, Pöttgen R (2018) Z Naturforsch 73B:1015

    Article  CAS  Google Scholar 

  43. Müllmann R, Mosel BD, Eckert H, Kotzyba G, Pöttgen R (1998) J Solid State Chem 137:174

    Article  Google Scholar 

  44. Klenner S, Heletta L, Pöttgen R (2019) Dalton Trans 48:3648

    Article  CAS  PubMed  Google Scholar 

  45. Block T, Numakura R, Pöttgen R (2019) Z Naturforsch 74b:451

    Google Scholar 

  46. Pöttgen R, Lang A, Hoffmann R-D, Künnen B, Kotzyba G, Müllmann R, Mosel BD, Rosenhahn C (1999) Z Kristallogr 214:143

    Google Scholar 

  47. Kußmann D, Hoffmann R-D, Pöttgen R (1998) Z Anorg Allg Chem 624:1727

    Article  Google Scholar 

  48. Yvon K, Jeitschko W, Parthé E (1977) J Appl Crystallogr 10:73

    Article  Google Scholar 

  49. Palatinus L (2013) Acta Crystallogr B 69:1

    Article  CAS  PubMed  Google Scholar 

  50. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786

    Article  CAS  Google Scholar 

  51. Petříček V, Dušek M, Palatinus L (2014) Z Kristallogr 229:345

    Google Scholar 

  52. Flack HD, Bernadinelli G (1999) Acta Crystallogr A 55:908

    Article  CAS  PubMed  Google Scholar 

  53. Flack HD, Bernadinelli G (2000) J Appl Crystallogr 33:1143

    Article  CAS  Google Scholar 

  54. Parsons S, Flack HD, Wagner T (2013) Acta Crystallogr B 69:249

    Article  CAS  Google Scholar 

  55. Villars P, Cenzual K (2018) Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2018/19). ASM International®, Materials Park

    Google Scholar 

  56. Long GJ, Cranshaw TE, Longworth G (1983) Mössbauer Eff Ref Data J 6:42

    Google Scholar 

  57. Brand RA (2017) WinNormos for Igor6 (version for Igor 6.2 or above: 22.02.2017), Universität Duisburg, Duisburg, Germany

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Pöttgen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heying, B., Kösters, J., Heletta, L. et al. Ternary platinides Sr4In13Pt9 and Eu5In9Pt7. Monatsh Chem 150, 1163–1173 (2019). https://doi.org/10.1007/s00706-019-02412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02412-8

Keywords

Navigation