Monatshefte für Chemie - Chemical Monthly

, Volume 150, Issue 6, pp 1049–1058 | Cite as

Complex formation between copper(II) and arginine in two ionic media and in a large range of reagent concentration

  • Emilio Bottari
  • Maria Rosa FestaEmail author
  • Lorella Gentile
Original Paper


Arginine and copper(II) play an important role in human physiology. Arginine is a precursor of NO which is a vasodilator and the right quantity of copper(II), bound to several amino acids, is necessary for the human body. The complex formation between copper(II) and arginine is studied at 25 °C and in two different ionic media: 1.00 mol dm−3 NaClO4 and 1.00 mol dm−3 NaCl. The investigation is carried out potentiometrically, by employing in 1.00 mol dm−3 NaClO4 cells involving glass and copper amalgam electrodes. In 1.00 mol dm−3 NaCl, only the glass electrode can be used. In both ionic media, the adoption of the constant ionic medium allows to extend the investigation to a large range of reagent concentration. Experimental data can be explained by assuming the formation of mononuclear complexes in copper(II). In 1.00 mol dm−3 NaClO4, complexes with the participation of hydrogen ions are assumed. The presence of the main complex in a large hydrogen ion concentration is supported also by spectrophotometric measurements.

Graphical abstract


Coordination chemistry Copper(II)–arginine complexes Stability constants Electrochemistry 



  1. 1.
    Petterson A, Uggla L, Backman V (1997) J Chrom B 692:257CrossRefGoogle Scholar
  2. 2.
    Zoccali C, Mandalari A (2004) In: 10th European meeting on cardionephrology, Ed. Bios, p 19Google Scholar
  3. 3.
    Sarkar B, Kruck TPA (1955) In: Peisach J, Aisen P, Blumberg WE (eds) The biochemistry of copper. Academic Press, New YorkGoogle Scholar
  4. 4.
    Bottari E, Festa MR (1997) Talanta 44:1705CrossRefGoogle Scholar
  5. 5.
    Apruzzese F, Bottari E, Festa MR (2002) Talanta 56:459CrossRefGoogle Scholar
  6. 6.
    Bottari E, Porto R (1985) Ann Chim (Rome) 75:393Google Scholar
  7. 7.
    Bottari E, Festa MR (1998) Talanta 46:91CrossRefGoogle Scholar
  8. 8.
    Bottari E, Festa MR, Jasionowska R (1990) J Coord Chem 21:215CrossRefGoogle Scholar
  9. 9.
    Antonilli M, Bottari E, Festa MR, Gentile L (2007) Ann Chim (Rome) 97:1257CrossRefGoogle Scholar
  10. 10.
    Antonilli M, Bottari E, Festa MR, Gentile L (2009) Chem Spec Bioavailab 21:33CrossRefGoogle Scholar
  11. 11.
    Bottari E, Festa MR, Gentile L (2011) J Chem Eng Data 56:1903CrossRefGoogle Scholar
  12. 12.
    Bottari E, Festa MR, Gentile L (2011) J Chem Eng Data 56:4751CrossRefGoogle Scholar
  13. 13.
    Bottari E, Festa MR, Gentile L (2013) J Sol Chem 42:823CrossRefGoogle Scholar
  14. 14.
    Bottari E, Festa MR, Gentile L (2013) J Chem Eng Data 58:718CrossRefGoogle Scholar
  15. 15.
    Bottari E, Festa MR, Gentile L (2014) Monatsh Chem 145:170CrossRefGoogle Scholar
  16. 16.
    Martell AE, Sillèn LG (1971) Stability constants special publications no 17 and 25. The Chemical Society, LondonGoogle Scholar
  17. 17.
    Pettit LD, Powell AK (1993) IUPAC stability constants database. Academic Software, Timble Otley YoksGoogle Scholar
  18. 18.
    Powell KJ (2000) The IUPAC Stability Constants Database. Academic Software Sourby Old Farm, Timble OTLEY, Yorks LS21 2PW, UKGoogle Scholar
  19. 19.
    Clarke ER, Martell AE (1970) J Inorg Nucl Chem 32:911CrossRefGoogle Scholar
  20. 20.
    Biedermann G, Sillèn LG (1953) Ark Kemi 5:425Google Scholar
  21. 21.
    Berecki- Biedermann C (1955) Ark Kemi 9:175Google Scholar
  22. 22.
    Sillèn LG (1956) Acta Chem Scand 10:186CrossRefGoogle Scholar
  23. 23.
    Bottari E, Coccitto T, Curzio G, Festa MR, Jasionowska R (1988) Ann Chim (Roma) 78:635Google Scholar
  24. 24.
    De Stefano C, Mineo P, Rigano C, Sammartano S (1993) Ann Chim (Rome) 83:343Google Scholar
  25. 25.
    Amico P, Daniele PG, Ostacoli G, Zelano V (1983) Ann Chim (Roma) 73:25Google Scholar
  26. 26.
    Albourine A, Petit-Ramel M, Thomas-David G (1989) Can J Chem 67:959CrossRefGoogle Scholar
  27. 27.
    Prasad K, Rao AK, Mohan MS (1987) J Coord Chem 16:251CrossRefGoogle Scholar
  28. 28.
    Nair MS, Santappa M (1982) Indian J Chem 21a:58Google Scholar
  29. 29.
    Sakurai T, Yamauchi O, Nakahara A (1978) Bull Chem Soc Jpn 51:3203CrossRefGoogle Scholar
  30. 30.
    Brookes G, Pettit LD (1976) J Chem Soc Dalton:42Google Scholar
  31. 31.
    Li NC, Doody E (1952) J Am Chem Soc 74:4184CrossRefGoogle Scholar
  32. 32.
    Albert A (1952) Biochem J 50:690CrossRefGoogle Scholar
  33. 33.
    Phan C, Tosi L, Garnier A (1975) J Inorg Nucl Chem 37:2385CrossRefGoogle Scholar
  34. 34.
    Yamauchi O, Odani A, Masuda H (1992) Inorg Chim Acta 198–200:749CrossRefGoogle Scholar
  35. 35.
    Zhang F, Yajima T, Odani A, Yamauchi O (1998) Inorg Chim Acta 278:136CrossRefGoogle Scholar
  36. 36.
    Masuda H, Odani A, Yamazaki T, Yajima T, Yamauchi O (1993) Inorg Chem 32:1111CrossRefGoogle Scholar
  37. 37.
    Iuliano M, Porto R, Vasca E (1989) Ann Chim (Rome) 79:439Google Scholar
  38. 38.
    Gündüz T, Qündüz N, Kiliç E, Köseoğlu F, Gül Öztas S (1988) Analyst 113:715CrossRefGoogle Scholar
  39. 39.
    Alemdaroglu T, Berthon G (1981) Inog Chim Acta 56:115CrossRefGoogle Scholar
  40. 40.
    Poddymov J, Ustinova AA (1981) Zhur Neorg Khim 26:1307Google Scholar
  41. 41.
    D’Angelo P, Bottari E, Festa MR, Nolting HF, Pavel NV (1998) J Phys Chem B 102:3114CrossRefGoogle Scholar
  42. 42.
    Forsling W, Hietanen S, Sillèn LG (1952) Acta Chem Scand 6:901CrossRefGoogle Scholar
  43. 43.
    Brown AS (1934) J Am Chem Soc 56:646CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di ChimicaS. Cannizzaro, Università “Sapienza”RomeItaly

Personalised recommendations