Skip to main content
Log in

Electrochemical study of adsorption and electrooxidation of 4,4′-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Electrochemical oxidation of 4,4′-biphenol has been studied in aqueous solution and acetone/water mixtures using cyclic voltammetry and chronocoulometry. Obtained results show that diffusion and adsorption currents are mixed (weak adsorption). Weak adsorption was studied and proven by various methods. Semi-integral analysis and chronocoulometry were used as effective methods for determining surface coverage (i.e., initial surface excess) from voltammogram and chronocoulogram in the presence of weak adsorption. An initial surface excess (Γ*) was determined to be 0.43 ± 0.02 nmol/cm2 for 4,4′-biphenol and 0.67 ± 0.03 nmol/cm2 for 4,4′-diphenoquinone by semi-integration and confirmed using chronocoulometry. A good agreement was observed between the results suggested by the applied methods. Eventually, the orientation of 4,4′-biphenol and 4,4′-diphenoquinone molecules adsorbed from solution onto the glassy carbon electrode was determined. Comparison of initial surface excess measurements with values calculated for various possible molecular orientations indicates that the dominant orientations of the adsorbed molecules (4,4′-biphenol and 4,4′-diphenoquinone) are edgewise. Calculations were based on covalent and Van der Waals radii as tabulated by Pauling.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li J-R, Kuppler RJ, Zhou H-C (2009) Chem Soc Rev 38:1477

    Article  CAS  Google Scholar 

  2. Bowker M (1998) The basis and applications of heterogeneous catalysis. Oxford University Press, Oxford

    Google Scholar 

  3. Dabrowski A, Curie S (1999) Adsorption and its applications in industry and environmental protection. Elsevier, Dordrecht

    Google Scholar 

  4. Gun’ko V, Blitz J, Zarko V, Turov V, Pakhlov E, Oranska O, Goncharuk E, Gornikov Y, Sergeev V, Kulik T (2009) J Colloid Interface Sci 330:125

    Article  Google Scholar 

  5. Ferreira AF, Santos JC, Plaza MG, Lamia N, Loureiro JM, Rodrigues AE (2011) Chem Eng J 167:1

    Article  CAS  Google Scholar 

  6. Geier SJ, Mason JA, Bloch ED, Queen WL, Hudson MR, Brown CM, Long JR (2013) Chem Sci 4:2054

    Article  CAS  Google Scholar 

  7. Hemmat M, Rahbar-Kelishami A, Vakili M (2018) Int J Environ Sci Technol 15:2213

    Article  CAS  Google Scholar 

  8. Zhu C, Liu P, Mathew AP (2017) ACS Appl Mater Interfaces 9:21048

    Article  CAS  Google Scholar 

  9. Ray S, Takafuji M, Ihara H (2013) RSC Adv 3:23664

    Article  CAS  Google Scholar 

  10. Yoon H, Na S-H, Choi J-Y, Latthe SS, Swihart MT, Al-Deyab SS, Yoon SS (2014) Langmuir 30:11761

    Article  CAS  Google Scholar 

  11. Ray PZ, Shipley HJ (2015) RSC Adv 5:29885

    Article  CAS  Google Scholar 

  12. Gil A, Assis F, Albeniz S, Korili S (2011) Chem Eng J 168:1032

    Article  CAS  Google Scholar 

  13. Webley PA (2014) Adsorption 20:225

    Article  CAS  Google Scholar 

  14. Comninellis C, Pulgarin C (1993) J Appl Electrochem 23:108

    Article  CAS  Google Scholar 

  15. Lahrich S, Hammani H, Boumya W, Loudiki A, Farahi A, Achak M, Bakasse M, El Mhammedi M (2016) Electroanalysis 28:1012

    Article  CAS  Google Scholar 

  16. Dohare P, Quraishi M, Obot I (2018) J Chem Sci 130:8

    Article  Google Scholar 

  17. Adekunle AS, Pillay J, Ozoemena KI (2008) Electroanalysis 20:2587

    Article  CAS  Google Scholar 

  18. Yoshimoto S, Itaya K (2013) Annu Rev Anal Chem 6:213

    Article  CAS  Google Scholar 

  19. Stenina E, Sviridova L, Krivenko A, Romanova L, Eremenko L (2003) Russ J Electrochem 39:1017

    Article  CAS  Google Scholar 

  20. Unni B, Simon S, Burgess IJ (2015) Langmuir 31:9882

    Article  CAS  Google Scholar 

  21. Sluyters-Rehbach M, Sluyters J (1975) J Electroanal Chem Interfacial Electrochem 65:831

    Article  CAS  Google Scholar 

  22. Bowling R, McCreery RL (1988) Anal Chem 60:605

    Article  CAS  Google Scholar 

  23. Petersen RA, Evans DH (1987) J Electroanal Chem Interfacial Electrochem 222:129

    Article  CAS  Google Scholar 

  24. Campos R, Ferapontova EE (2014) Electrochim Acta 126:151

    Article  CAS  Google Scholar 

  25. Beltrán-Prieto JC, Slavík R, Kolomazník K (2014) Int J Electrochem Sci 10:6910

    Google Scholar 

  26. Bond AM, Miao W, Raston CL (2000) J Phys Chem B 104:2320

    Article  CAS  Google Scholar 

  27. Anson FC (1966) Anal Chem 38:54

    Article  CAS  Google Scholar 

  28. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  29. Xiao-Ping W, Lan Z, Wen-Rong L, Jian-Ping D, Hong-Qing C, Guo-Nan C (2002) Electroanalysis 14:1654

    Article  Google Scholar 

  30. Freund MS, Brajter-Toth A (1992) J Phys Chem 96:9400

    Article  CAS  Google Scholar 

  31. Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J (2013) Anal Chem 85:2239

    Article  CAS  Google Scholar 

  32. Maldonado S, Morin S, Stevenson KJ (2006) Analyst 131:262

    Article  CAS  Google Scholar 

  33. Shayani-Jam H, Nematollahi D (2011) Electrochim Acta 56:9311

    Article  CAS  Google Scholar 

  34. Fraser DM (1994) Anal Lett 27:2039

    Article  CAS  Google Scholar 

  35. Niazi A, Pourghobadi Z, Nematollahi D, Beiginejad H (2014) J Electrochem Soc 161:H284

    Article  CAS  Google Scholar 

  36. Batsanov S (2001) Inorg Mater 37:871

    Article  CAS  Google Scholar 

  37. Shayani-Jam H, Nematollahi D (2010) Chem Commun 46:409

    Article  CAS  Google Scholar 

  38. Wopschall RH, Shain I (1967) Anal Chem 39:1514

    Article  CAS  Google Scholar 

  39. Wopschall RH, Shain I (1967) Anal Chem 39:1535

    Article  CAS  Google Scholar 

  40. Oldham KB (1972) Anal Chem 44:196

    Article  Google Scholar 

  41. Goto M, Oldham KB (1973) Anal Chem 45:2043

    Article  CAS  Google Scholar 

  42. Dalrymple-Alford P, Goto M, Oldham KB (1977) Anal Chem 49:1390

    Article  CAS  Google Scholar 

  43. Oldham KB (1986) Anal Chem 58:2296

    Article  CAS  Google Scholar 

  44. Mahon PJ, Oldham KB (1998) J Electroanal Chem 445:179

    Article  CAS  Google Scholar 

  45. Imbeaux J, Savéant J (1973) J Electroanal Chem Interfacial Electrochem 44:169

    Article  CAS  Google Scholar 

  46. Oldham KB (1986) J Chem Soc Faraday Trans 1(82):1099

    Article  Google Scholar 

  47. Klička R (1998) J Electroanal Chem 455:253

    Article  Google Scholar 

  48. Laviron E (1974) J Electroanal Chem Interfacial Electrochem 52:395

    Article  CAS  Google Scholar 

  49. Leddy J, Bard AJ (1985) J Electroanal Chem Interfacial Electrochem 189:203

    Article  CAS  Google Scholar 

  50. Bertram R (1970) Angew Chem 82:820

    Article  Google Scholar 

  51. Khazalpour S, Nematollahi D (2014) RSC Adv 4:8431

    Article  CAS  Google Scholar 

  52. Beginejad H, Nematollahi D, Varmaghani F, Shayani-Jam H (2013) Monatsh Chem 144:1481

    Article  CAS  Google Scholar 

  53. Soriaga MP, Hubbard AT (1982) J Am Chem Soc 104:3937

    Article  CAS  Google Scholar 

  54. Soriaga MP, Wilson PH, Hubbard AT, Benton CS (1982) J Electroanal Chem Interfacial Electrochem 142:317

    Article  CAS  Google Scholar 

  55. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, Ithaca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Shayani-jam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayani-jam, H. Electrochemical study of adsorption and electrooxidation of 4,4′-biphenol on the glassy carbon electrode: determination of the orientation of adsorbed molecules. Monatsh Chem 150, 183–192 (2019). https://doi.org/10.1007/s00706-018-2318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2318-4

Keywords

Navigation