Skip to main content
Log in

Bipyrazole-based palladium(II) complexes as DNA intercalator and artificial metallonuclease

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Substituted 3′-methyl-1′,2-diphenyl-3,4-dihydro-1′H,2H-3,4′-bipyrazole and their square planar palladium(II) complexes of type [Pd(4n)Cl2], where 4n = bipyrazole-based ligands, have been synthesized. The compounds have been characterized by various techniques like elemental analysis, mass, absorption, IR, 1H NMR and 13C NMR spectroscopy. The complexes have been further analyzed by thermogravimetric analysis (TGA), conductance measurement and energy-dispersive X-ray spectroscopy (EDX). Interaction between compounds and herring sperm DNA has been studied by absorption titration, viscosity measurement, ethidium bromide displacement titration, and molecular docking study. The binding strength between compounds and DNA has been checked in terms of Kb, Ksv, and Kf values; while spontaneity of interaction has been checked by evaluating thermodynamic parameters like Gibb’s free energy, enthalpy change (∆H°) and entropy change (∆S°). The plasmid cleavage efficacy of complexes has been evaluated by gel electrophoresis technique. The minimum inhibitory concentration of compounds has been evaluated against pathogens such as Staphylococcus aureus, Escherichia coli, B. subtilis, S. marcescens and Pseudomonas aeruginosa. The in vivo and in vitro cytotoxic activity has been performed using cell viability assay and brine shrimp lethality bioassay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Florea A-M, Büsselberg D (2011) Cancers 3:1351

    Article  CAS  Google Scholar 

  2. Gautier A, Cisnetti F (2012) Metallomics 4:23

    Article  CAS  Google Scholar 

  3. Icsel C, Yilmaz VT, Kaya Y, Samli H, Harrison WTA, Buyukgungor O (2015) Dalton Trans 44:6880

    Article  CAS  Google Scholar 

  4. Raj Kumar R, Mohamed Subarkhan MK, Ramesh R (2015) RSC Adv 5:46760

    Article  Google Scholar 

  5. Wagner-Schuh B, Beck W (2017) Z Anorg Allg Chem 643:632

    Article  CAS  Google Scholar 

  6. Krogul A, Cedrowski J, Wiktorska K, Oziminski WP, Skupińska J, Litwinienko G (2013) Bioorg Med Chem Lett 23:2765

    Article  CAS  Google Scholar 

  7. Bekhit AA, Ashour HMA, Abdel Ghany YS, Bekhit AE-DA, Baraka A (2008) Eur J Med Chem 43:456

    Article  CAS  Google Scholar 

  8. Vanicek S, Kopacka H, Wurst K, Vergeiner S, Oehninger L, Ott I, Bildstein B (2015) Z Anorg Allg Chem 641:1282

    Article  CAS  Google Scholar 

  9. Kalinowska-Lis U, Szabłowska-Gadomska I, Lisowska K, Ochocki J, Małecki M, Felczak A (2017) Z Anorg Allg Chem 643:993

    Article  CAS  Google Scholar 

  10. Lippard SJ (1994) Principles of bioinorganic chemistry. University Science Books, California

    Google Scholar 

  11. El-Gamel NE (2013) Monatsh Chem 144:1627

    Article  CAS  Google Scholar 

  12. Leela DS, Ushaiah B, Anupama G, Sunitha M, Kumari CG (2015) J Fluoresc 25:185

    Article  CAS  Google Scholar 

  13. Nagababu P, Latha JN, Satyanarayana S (2006) Chem Biodivers 3:1219

    Article  CAS  Google Scholar 

  14. Afrati T, Pantazaki AA, Dendrinou-Samara C, Raptopoulou C, Terzis A, Kessissoglou DP (2010) Dalton Trans 39:765

    Article  CAS  Google Scholar 

  15. Jin VX, Ranford JD (2000) Inorg Chim Acta 304:38

    Article  CAS  Google Scholar 

  16. Liu Z-C, Wang B-D, Li B, Wang Q, Yang Z-Y, Li T-R, Li Y (2010) Eur J Med Chem 45:5353

    Article  CAS  Google Scholar 

  17. Raman N, Sobha S, Mitu L (2012) Monatsh Chem 143:1019

    Article  CAS  Google Scholar 

  18. Tjioe L, Meininger A, Joshi T, Spiccia L, Graham B (2011) Inorg Chem 50:4327

    Article  CAS  Google Scholar 

  19. Patel MN, Gandhi DS, Parmar PA (2011) Spectrochim Acta A 84:243

    Article  CAS  Google Scholar 

  20. Chitrapriya N, Mahalingam V, Zeller M, Natarajan K (2010) Inorg Chim Acta 363:3685

    Article  CAS  Google Scholar 

  21. N’Soukpoé-Kossi CN, Descôteaux C, Asselin É, Tajmir-Riahi H-A, Bérubé G (2007) DNA Cell Biol 27:101

    Article  Google Scholar 

  22. Waring MJ (1965) J Mol Biol 13:269

    Article  CAS  Google Scholar 

  23. Kalaivani P, Prabhakaran R, Ramachandran E, Dallemer F, Paramaguru G, Renganathan R, Poornima P, Padma VV, Natarajan K (2012) Dalton Trans 41:2486

    Article  CAS  Google Scholar 

  24. Shanmugapriya A, Kalaiarasi G, Kalaivani P, Dallemer F, Prabhakaran R (2016) Inorg Chim Acta 449:107

    Article  CAS  Google Scholar 

  25. Koumousi ES, Zampakou M, Raptopoulou CP, Psycharis V, Beavers CM, Teat SJ, Psomas G, Stamatatos TC (2012) Inorg Chem 51:7699

    Article  CAS  Google Scholar 

  26. Wolfe A, Shimer GH, Meehan T (1987) Biochemistry 26:6392

    Article  CAS  Google Scholar 

  27. Zhang Y, Zhang G, Li Y, Hu Y (2013) J Agric Food Chem 61:2638

    Article  CAS  Google Scholar 

  28. Rajendiran V, Murali M, Suresh E, Sinha S, Somasundaram K, Palaniandavar M (2008) Dalton Trans 1:148

    Article  Google Scholar 

  29. Rajendiran V, Murali M, Suresh E, Palaniandavar M, Periasamy VS, Akbarsha MA (2008) Dalton Trans 16:2157

    Article  Google Scholar 

  30. Inclán M, Albelda MT, Frías JC, Blasco S, Verdejo B, Serena C, Salat-Canela C, Díaz ML, García-España A, García-España E (2012) J Am Chem Soc 134:9644

    Article  Google Scholar 

  31. Dimiza F, Fountoulaki S, Papadopoulos AN, Kontogiorgis CA, Tangoulis V, Raptopoulou CP, Psycharis V, Terzis A, Kessissoglou DP, Psomas G (2011) Dalton Trans 40:8555

    Article  CAS  Google Scholar 

  32. Tan C, Liu J, Li H, Zheng W, Shi S, Chen L, Ji L (2008) J Inorg Biochem 102:347

    Article  CAS  Google Scholar 

  33. Tarushi A, Lafazanis K, Kljun J, Turel I, Pantazaki AA, Psomas G, Kessissoglou DP (2013) J Inorg Biochem 121:53

    Article  CAS  Google Scholar 

  34. Psomas G (2008) J Inorg Biochem 102:1798

    Article  CAS  Google Scholar 

  35. Moradi S, Ajloo D, Lashkarbolouki T, Alizadeh R, Saboury AA (2013) Monatsh Chem 144:1499

    Article  CAS  Google Scholar 

  36. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  37. Clever GH, Söltl Y, Burks H, Spahl W, Carell T (2006) Chem Eur J 12:8708

    Article  CAS  Google Scholar 

  38. Macías B, Villa MV, Gómez B, Borrás J, Alzuet G, González-Álvarez M, Castiñeiras A (2007) J Inorg Biochem 101:444

    Article  Google Scholar 

  39. Moreno RGM, Alipázaga MV, Gomes OF, Linares E, Medeiros MHG, Coichev N (2007) J Inorg Biochem 101:866

    Article  CAS  Google Scholar 

  40. Barton JK, Raphael AL (1984) J Am Chem Soc 106:2466

    Article  CAS  Google Scholar 

  41. Tweedy B (1964) Phytopathology 55:910

    Google Scholar 

  42. Patel MN, Patel SH, Chhasatia MR, Parmar PA (2008) Bioorg Med Chem Lett 18:6494

    Article  CAS  Google Scholar 

  43. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL (1982) Planta Med 45:31

    Article  CAS  Google Scholar 

  44. Xu C-J, Shi Y-Q (2011) J Chem Crystallgr 41:1816

    Article  CAS  Google Scholar 

  45. Trilleras J, Quiroga J, Cobo J, Low JN, Glidewell C (2005) Acta Cryst E 61:1892

    Article  Google Scholar 

  46. Mehta JV, Gajera SB, Patel MN (2016) Med Chem Commun 7:1367

    Article  CAS  Google Scholar 

  47. Patel MN, Bhatt BS, Dosi PA (2013) Spectrochim Acta A 110:20

    Article  CAS  Google Scholar 

  48. Patel MN, Bhatt BS, Dosi PA (2012) Z Anorg Allg Chem 638:152

    Article  CAS  Google Scholar 

  49. Baguley BC, Le Bret M (1984) Biochemistry 23:937

    Article  CAS  Google Scholar 

  50. Gajera SB, Mehta JV, Patel MN (2015) RSC Adv 5:21710

    Article  CAS  Google Scholar 

  51. Vekariya PA, Karia PS, Vaghasiya JV, Soni S, Suresh E, Patel MN (2016) Polyhedron 110:73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India, for providing the laboratory facilities, U.G.C., New Delhi for providing financial assistance of UGC BSR Grant no. C/2013/BSR/Chemistry/59 and “BSR UGC One Time Grant”, vide UGC letter no. F.19-119/2014 (BSR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhupesh S. Bhatt or Mohan N. Patel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakor, K.P., Lunagariya, M.V., Bhatt, B.S. et al. Bipyrazole-based palladium(II) complexes as DNA intercalator and artificial metallonuclease. Monatsh Chem 150, 233–245 (2019). https://doi.org/10.1007/s00706-018-2316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2316-6

Keywords

Navigation