Skip to main content
Log in

Influences of the substituents on the Cr=C bond in [(OC)5Cr=C(OEt)-para-C6H4X] complexes: quantum Theory of Atoms in Molecules, Energy Decomposition Analysis, and Interacting Quantum Atoms

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This study was conducted to investigate the effect of various substituents on the Cr=C bond in the [(OC)5Cr=C(OEt)-para-C6H4X] complexes using B3LYP*-based quantum mechanical calculations. In this respect, the study evaluates the influence of electron withdrawing and donating groups on the Cr=C bond distances and topological properties and correlates the calculated parameters with the Hammett and Brown constants for the para-substituted (σp and σ +p , respectively) functional groups. Also, the frontier orbital analysis was used to show the electronic structure of complexes and the percentage composition in terms of the defined groups of frontier orbitals was evaluated. To obtain insight into the physical nature of Cr=C bond bonds, we extensively used energy decomposition analysis and Bader’s Quantum Theory of Atoms-in-Molecules (QTAIM). With this aim, in addition to examining the bond critical points properties, we apply Pendás’ Interacting Quantum Atoms (IQA) scheme, which enables the rigorous and physical study of Cr=C bonds in these complexes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Taxak N, Patel B, Bharatam PV (2013) Inorg Chem 52:5097

    Article  CAS  Google Scholar 

  2. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Chem Rev 100:39

    Article  CAS  Google Scholar 

  3. Korotkikh NI, Raenko GF, Pekhtereva TM, Shvaika OP, Cowley AH, Jones JN (2006) Russ J Org Chem 42:1822

    Article  CAS  Google Scholar 

  4. Fischer EO, Kreis G, Kreiter CG, Müller J, Huttner G, Lorenz H (1973) Angew Chem Int Ed 12:564

    Article  Google Scholar 

  5. Depooeter CKR (1981) Chem Rev 81:447

    Article  Google Scholar 

  6. Wilkinson SG, Stone FGA, Abel EW (1982) Comprehensive organometallic chemistry, vol 8. Pergamon Press, Oxford, p 40

    Google Scholar 

  7. Herndon JW (2013) Coord Chem Rev 257:2899

    Article  CAS  Google Scholar 

  8. Re RED, Hopkins MD (2005) Coord Chem Rev 249:1396

    Article  CAS  Google Scholar 

  9. Herndon JW (2003) Coord Chem Rev 243:3

    Article  CAS  Google Scholar 

  10. Mindiola DJ (2006) Acc Chem Res 39:813

    Article  CAS  Google Scholar 

  11. Cordiner RL, Gugger PA, Hill AF, Willis AC (2009) Organometallics 28:6632

    Article  CAS  Google Scholar 

  12. Colebatch L, Hill AF, Shang R, Willis AC (2010) Organometallics 29:6482

    Article  CAS  Google Scholar 

  13. Herndon JW (2014) Coord Chem Rev 272:48

    Article  CAS  Google Scholar 

  14. Herndon JW (2015) Coord Chem Rev 286:30

    Article  CAS  Google Scholar 

  15. Ghiasi R (2015) J Theor Comput Chem 14:1550022

    Article  CAS  Google Scholar 

  16. Ghiasi R, Mokarram EE (2011) Russ J Phys Chem A 875:1174

    Google Scholar 

  17. Ghiasi R, Abdolmohammadi S, Moslemizadeh S (2015) J Chin Chem Soc 62:898

    Article  CAS  Google Scholar 

  18. Ghobadi H, Ghiasi R, Jamehbozorgi S (2017) J Chin Chem Soc 64:522

    Article  CAS  Google Scholar 

  19. Shamami MK, Ghiasi R, Asli MD (2017) J Chin Chem Soc 64:522

    Article  CAS  Google Scholar 

  20. Shamami MK, Ghiasi R (2017) J Chin Chem Soc 64:651

    Article  CAS  Google Scholar 

  21. Sierra MA (2000) Chem Rev 100:3591

    Article  CAS  Google Scholar 

  22. Meijere AD, Schirmer H, Duetsch M (2000) Angew Chem Int Ed 39:3964

    Article  Google Scholar 

  23. Barluenga J, Santamarıa J, Tomas M (2004) Chem Rev 104:2259

    Article  CAS  Google Scholar 

  24. Gomez-Gallego M, Mancheno MJ, Sierra MA (2005) Acc Chem Res 38:44

    Article  CAS  Google Scholar 

  25. Sierra MA, Gomez-Gallego M, Martınez-Alvarez R (2007) Chem Eur J 13:736

    Article  CAS  Google Scholar 

  26. Lage ML, Fernandez I, Mancheno MJ, Sierra MA (2008) Inorg Chem 47:5253

    Article  CAS  Google Scholar 

  27. Stockmann A, Kurzawa J, Fritz N, Acar N, Schneider S, Daub J, Engl R, Clark T (2002) J Phys Chem A 106:7958

    Article  CAS  Google Scholar 

  28. Ottonelli M, Piccardo M, Duce D, Thea S, Dellepiane G (2012) J Phys Chem A 116:611

    Article  CAS  Google Scholar 

  29. Cheng Y-H, Fang Y, Zhao X, Liu L, Guo Q-X (2002) Bull Chem Soc Jpn 75:1715

    Article  CAS  Google Scholar 

  30. Pichierri F (2017) Theor Chem Acc 136:114

    Article  CAS  Google Scholar 

  31. Remya GS, Suresh CH (2016) Phys Chem Chem Phys 18:20615

    Article  CAS  Google Scholar 

  32. Szatylowicz H, Jezuita A, Siodła T, Varaksin KS, Domanski MA, Ejsmont K, Krygowski TM (2017) ACS Omega 2:7163

    Article  CAS  Google Scholar 

  33. Ghiasi R, Zamani A (2017) J Chin Chem Soc 64:1340

    Article  CAS  Google Scholar 

  34. Ghiasi R, Pasdar H, Fereidoni S (2016) Russ J Inorg Chem 61:327

    Article  CAS  Google Scholar 

  35. Ghiasi R, Heydarbeighi A (2016) Russ J Inorg Chem 61:985

    Article  CAS  Google Scholar 

  36. Ghiasi R, Pasdar H, Irajizadeh F (2015) J Chil Chem Soc 60:2740

    Article  CAS  Google Scholar 

  37. Peikari A, Ghiasi R, Pasdar H (2015) Russ J Phys Chem A 89:250

    Article  CAS  Google Scholar 

  38. Ghiasi R, Amini E (2015) J Struct Chem 56:1483

    Article  CAS  Google Scholar 

  39. Fashami MZ, Ghiasi R (2015) J Struct Chem 56:1474

    Article  CAS  Google Scholar 

  40. Ghiasi R, Boshak A (2013) J Mex Chem Soc 57:8

    CAS  Google Scholar 

  41. Pasdar H, Ghiasi R (2009) Main Group Chem 8:143

    Article  CAS  Google Scholar 

  42. Egorochkin AN, Kuznetsova OV, Khamaletdinova NM, Domratcheva-Lvova LG (2018) Inorg Chim Acta 471:148

    Article  CAS  Google Scholar 

  43. Anane H, Houssame SE, Guerraze AE, Guermoune A, Boutalib A, Jarid A, Nebot-Gil I, Tomás F (2008) Cent Eur J Chem 6:400

    CAS  Google Scholar 

  44. Denning DM, Falvey DE (2017) J Org Chem 82:1552

    Article  CAS  Google Scholar 

  45. Hammett LP (1937) J Am Chem Soc 59:96

    Article  CAS  Google Scholar 

  46. Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165

    Article  CAS  Google Scholar 

  47. Gázquez J, Cedillo A, Vela A (2007) J Phys Chem A 11:1966

    Article  CAS  Google Scholar 

  48. Chattaraj P, Chakraborty A, Giri S (2009) J Phys Chem A 113:10068

    Article  CAS  Google Scholar 

  49. Cremer D, Kraka E (1984) Croat Chem Acta 57:1259

    Google Scholar 

  50. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529

    Article  CAS  Google Scholar 

  51. Blanco M, Pandás AM, Mckee WC (2014) J Comput Chem 35:1499

    Article  CAS  Google Scholar 

  52. Pendas AM, Blanco MA, Francisco E (2007) J Comput Chem 28:161

    Article  CAS  Google Scholar 

  53. Blanco MA, Pendas AM, Francisco E (2005) J Chem Theory Comput 1:1096

    Article  CAS  Google Scholar 

  54. Francisco E, Pendas AM, Blanco MAA (2006) J Chem Theory Comput 2:90

    Article  CAS  Google Scholar 

  55. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalman G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford

    Google Scholar 

  56. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  57. Wachters AJH (1970) J Chem Phys 52:1033

    Article  CAS  Google Scholar 

  58. Hay PJ (1977) J Chem Phys 66:4377

    Article  CAS  Google Scholar 

  59. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Article  CAS  Google Scholar 

  60. Rappoport D, Furche F (2010) J Chem Phys 133:134105

    Article  CAS  Google Scholar 

  61. Parr RG, Yang W (1989) Density-function theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  62. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839

    Article  CAS  Google Scholar 

  63. Lu T, Chen F (2012) J Mol Gr Model 38:314

    Article  CAS  Google Scholar 

  64. Lu T, Chen F (2012) J Comp Chem 33:580

    Article  CAS  Google Scholar 

  65. Keith TA (2013) AIMAll Version 13.11.04. TK Gristmill Software, Overland Park, KS

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Saraf, S.H. & Pasdar, H. Influences of the substituents on the Cr=C bond in [(OC)5Cr=C(OEt)-para-C6H4X] complexes: quantum Theory of Atoms in Molecules, Energy Decomposition Analysis, and Interacting Quantum Atoms. Monatsh Chem 149, 2167–2174 (2018). https://doi.org/10.1007/s00706-018-2299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2299-3

Keywords

Navigation