Skip to main content
Log in

Synthesis of azulenic compounds substituted in the 1-position with heterocycles

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The review proposes an overview of the important general routes for the achievement of 1-heteroarylazulenes using both azulene substitution by heterocycles and azulenic cyclic construction pathways. With strong electrophilic heterocyclic derivatives, the electrophilic substitution takes place while concerted route is adopted for medium and low reactive heterocyclic substrates. Particular attention has been paid to the heterocycles construction from the functional groups attached to azulenic 1-position.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shoji T, Ito S (2018) Adv Heterocycl Chem 126:1

    Article  Google Scholar 

  2. Tang T, Lin T, Wang FK, He C (2015) J Phys Chem B 119:8176

    Article  CAS  PubMed  Google Scholar 

  3. Kurotobi K, Kim KS, Noh SB, Kim D, Osuka A (2006) Angew Chem Int Ed 45:3944

    Article  CAS  Google Scholar 

  4. Xin H, Gao X (2017) Chem Plus Chem 82:945

    CAS  Google Scholar 

  5. Dong J-X, Zhang H-L (2016) Chin Chem Lett 27:1097

    Article  CAS  Google Scholar 

  6. Umeyama T, Watanabe Y, Miyata T, Imahori H (2015) Chem Lett 44:47

    Article  CAS  Google Scholar 

  7. Yao J, Cai Z, Liu Z, Yu C, Luo H, Yang Y, Yang S, Zhang G, Zhang D (2015) Macromolecules 48:2039

    Article  CAS  Google Scholar 

  8. Buica GO, Ungureanu EM, Birzan L, Razus AC, Bujduveanu MR (2011) Electrochim Acta 56:5028

    Article  CAS  Google Scholar 

  9. Buica GO, Ungureanu EM, Birzan L, Razus AC, Mandoc LR (2013) J Electroanal Chem 693:67

    Article  CAS  Google Scholar 

  10. Birzan L, Cristea M, Draghici C, Tecuceanu V, Maganu M, Hanganu A, Arnold GL, Ungureanu EM, Razus AC (2016) Tetrahedron 72:2316

    Article  CAS  Google Scholar 

  11. Schroth W, Dolling W, Balaban AT (1996) The syntheses and properties of pyrylium salts were reviewed. Houben-Weyl, Methoden der Organischen Chemie. Thieme Verlag, Stuttgart, p 755

    Google Scholar 

  12. Razus AC, Pavel C, Lehadus O, Nica S, Corbu A (2008) Tetrahedron 64:1792

    Article  CAS  Google Scholar 

  13. Dorofeenko GN, Koblik AV, Polyakova TI, Muradyan LA (1980) Khim Geterotsikl Soedin 8:1045

    Google Scholar 

  14. Porshnev YN, Erihov VI, Andronova NA, Misin VM, Tserkhasin MI (1981) Dokl Akad Nauk SSSR Ser Khim 265:881

    Google Scholar 

  15. Krivun SV, Baranov SN, Buriak AI (1971) Khim Geterotsikl Soedin 6:1320

    Google Scholar 

  16. Rosokha SV, Kochi JK (2002) J Org Chem 67:1727

    Article  CAS  PubMed  Google Scholar 

  17. Razus AC, Birzan L, Pavel C, Lehadus O, Corbu AC, Chiraleu F, Enache C (2006) J Heterocycl Chem 43:963

    Article  CAS  Google Scholar 

  18. Razus AC, Birzan L, Corbu A, Zaharia O, Enache C (2006) Arkivoc xii:121

    Google Scholar 

  19. Razus AC, Birzan L, Cristea M, Tecuceanu V, Enache C (2012) Rev Chim (Bucharest) 63:660

    CAS  Google Scholar 

  20. Razus AC, Birzan L, Zaharia O, Enache C (2008) J Heterocycl Chem 45:1139

    Article  CAS  Google Scholar 

  21. Razus AC, Birzan L, Cristea M, Tecuceanu V, Hanganu A, Enache C (2011) J Heterocycl Chem 48:1019

    Article  CAS  Google Scholar 

  22. Satoh K, Ogura I (1992) Yakugaku Zasshi 112:211

    Article  CAS  Google Scholar 

  23. Sheikman AK, Samoilenko GV, Baranov SN, Kalnitskii NR (1975) Chem Heterocycl Compds 11:1168

    Article  Google Scholar 

  24. Ito S, Shoji T, Morita N (2011) Synlett 16:2279x.x.201

    Google Scholar 

  25. Shoji T, Ito S, Okujima T, Higashi J, Yokoyama R, Toyota K, Yasunami M, Morita N (2009) Eur J Org Chem 2009:1554

    Article  CAS  Google Scholar 

  26. Shoji T, Yokoyama R, Ito S, Watanabe M, Toyota K, Yasunami M, Morita N (2007) Tetrahedron Lett 48:3009

    Article  CAS  Google Scholar 

  27. Shoji T, Ito S, Toyota K, Yasunami M, Morita N (2007) Tetrahedron Lett 48:4999

    Article  CAS  Google Scholar 

  28. Shoji T, Maruyama A, Ito S, Okujima T, Yasunami M, Higashi J, Morita N (2014) Heterocycles 89:2588

    Article  CAS  Google Scholar 

  29. Shoji T, Yamamoto A, Shimomura E, Maruyama M, Ito S, Okujima T, Toyota K, Morita N (2013) Chem Lett 42:638

    Article  CAS  Google Scholar 

  30. Shoji T, Yokoyama R, Ito S, Watanabe M, Toyota K, Yasunami M, Morita N (2007) Tetrahedron Lett 48:1099

    Article  CAS  Google Scholar 

  31. Shoji T, Inoue Y, Ito S (2012) Tetrahedron Lett 53:1493

    Article  CAS  Google Scholar 

  32. Ueno T, Toda H, Yasunami M, Yoshifuji M (1996) Bull Chem Soc Jpn 69:1645

    Article  CAS  Google Scholar 

  33. Cowper P, Jin Y, Turton MD, Kociok-Köhn G, Lewis SE (2016) Angew Chem Int Ed 55:2564

    Article  CAS  Google Scholar 

  34. Wakabayashi S, Kato Y, Mochizuki K, Suzuki R, Matsumoto M, Sugihara Y, Shimizu M (2007) J Org Chem 72:744

    Article  CAS  PubMed  Google Scholar 

  35. Kurotobi K, Osuka A (2005) Org Lett 7:1055

    Article  CAS  PubMed  Google Scholar 

  36. Murai M, Yanagawa M, Nakamura M, Takai K (2016) Asian J Org Chem 5:629

    Article  CAS  Google Scholar 

  37. Thanh NC, Ikai M, Kajioka T, Fujikawa H, Taga Y, Zhang Y, Ogawa S, Shimada H, Miyahara Y, Kuroda S, Oda M (2006) Tetrahedron 62:11227

    Article  CAS  Google Scholar 

  38. Wang F, Lai Y-H (2003) Macromolecules 36:536

    Article  CAS  Google Scholar 

  39. Oda M, Kishi S, Thanh NC, Kuroda S (2007) Heterocycles 71:1413

    Article  CAS  Google Scholar 

  40. Oda M, Thanh NC, Ikai M, Fujikawa H, Nakajima K, Kuroda SB (2007) Tetrahedron 63:10608

    Article  CAS  Google Scholar 

  41. Amir E, Murai M, Amir RJ, Cowart JS Jr, Chabinyc ML, Hawker CJ (2014) Chem Sci 5:4483

    Article  CAS  Google Scholar 

  42. Salman H, Abraham Y, Tal S, Meltzman S, Kapou M, Tessler N, Speiser S, Eichen Y (2005) Eur J Org Chem 2005:2207

    Article  CAS  Google Scholar 

  43. Dubovik J, Bredihhin A (2015) Synthesis 47:538

    CAS  Google Scholar 

  44. Ho TI, Ku CK, Liu RS (2001) Tetrahedron Lett 42:715

    Article  CAS  Google Scholar 

  45. Dorofeenko GN, Koblik AV, Polyakova TI, Muradyan LA (1980) Chem Heterocycl Compds 16:807 (Translated from (1980) Khim Geterotsikl Soedin 8:1045)

    Article  Google Scholar 

  46. Balaban AT, Dinulescu A, Dorofeenko GN, Fischer GW, Koblik AV, Mezheritskii VV, Schroth W (1982) Pyrylium salts: synthesis, reactions, and physical properties. Advances in heterocyclic chemistry, vol 2. Academic Press, New York

    Google Scholar 

  47. Razus AC, Birzan L, Pavel C, Lehadus O, Corbu A, Chiraleu F, Enache C (2007) J Heterocycl Chem 44:245

    Article  CAS  Google Scholar 

  48. Dyker G, Borowski S, Heiermann J, Korning J, Opwis K, Henkel G, Kockerling M (2000) J Organomet Chem 606:108

    Article  CAS  Google Scholar 

  49. Razus AC, Birzan L, Pavel C, Lehadus O, Corbu A, Chiraleu F, Enache C (2007) J Heterocycl Chem 44:251

    Article  CAS  Google Scholar 

  50. Wang D-L, Imafuku K (2000) J Heterocycl Chem 37:1019

    Article  CAS  Google Scholar 

  51. Ion AE, Cristian L, Voicescu M, Bangesh M, Madalan AM, Bala D, Mihailciuc C, Nica S (2016) Beilstein J Org Chem 12:1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mori T, Imafuku K, Piao M-Z, Fujimori K (1996) J Heterocycl Chem 33:841

    Article  CAS  Google Scholar 

  53. Treibs W, Streckenbach B (1961) Chem Ber 94:1734

    Article  CAS  Google Scholar 

  54. Razus AC, Birzan L, Nae S, Lehadus OL, Pavel C, Costan O (2005) Arkivok x:71

    Google Scholar 

  55. Wang D-L, Deng J-J, Xu J, Imafuku K (2007) Heterocycles 71:2237

    Article  CAS  Google Scholar 

  56. Takao H, Wang D-L, Kikuchi S, Imafuku K (2004) J Heterocycl Chem 41:723

    Article  CAS  Google Scholar 

  57. Miyashita Y, Kikuchi S, Imafuku K (2003) Heterocycles 59:359

    Article  CAS  Google Scholar 

  58. Morita N, Moriyama S, Shoji T, Nakashima M, Watanabe M, Kikuchi S, Ito S, Fujimori K (2004) Heterocycles 64:305

    Article  CAS  Google Scholar 

  59. Shoji T, Tanaka M, Araki T, Takagaki S, Sekiguchi R, Ito S (2016) RSC Adv 6:78303

    Article  CAS  Google Scholar 

  60. Shoji T, Tanaka M, Takagaki S, Miura K, Ohta A, Sekiguchi R, Ito S, Moric S, Okujima T (2018) Org Biomol Chem 16:480

    Article  CAS  PubMed  Google Scholar 

  61. Gers CF, Rosellen J, Merkul E, Müller TJJ (2011) Beilstein J Org Chem 7:1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Oda M, Kajioka T, Haramoto K, Miyatake R, Kuroda S (1999) Synthesis 1999:1349

    Article  Google Scholar 

Download references

Acknowledgements

A. C. R. is thankful to the Humboldt Foundation, and special gratitude is due to Prof. Klaus Hafner for helpful suggestions and discussions during and after the scholarship of the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Birzan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razus, A.C., Birzan, L. Synthesis of azulenic compounds substituted in the 1-position with heterocycles. Monatsh Chem 150, 139–161 (2019). https://doi.org/10.1007/s00706-018-2294-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2294-8

Keywords

Navigation