Skip to main content
Log in

Electrochemical behavior and anti/prooxidant activity of thioethers with redox-active catechol moiety

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A number of asymmetrical thioethers combining sterically hindered catechol moiety and different groups (polar, non-polar, or redox active) at sulfur atom have been synthesized. Redox transformations of sulfides were studied by cyclic voltammetry. The electrooxidation of thioethers at the first stage leads to the formation of o-benzoquinones. The presence of a redox-active thioether linker and additional phenolic fragment favors to an extension of the range of redox properties for such functionalized catechols. The introduction of the thioether fragment into catechol ring affects not only the electrochemical behavior of the compounds, but also the antioxidant activity. The antioxidant activities of the compounds were evaluated using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) assay, the oxidative damage of the DNA, the reaction of 2,2′-azobis(2-amidinopropane dihydrochloride) (AAPH)-induced glutathione depletion, and the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro. The compounds have greater antiradical effect than 3,5-di-tert-butylcatechol (CatH2) in DPPH assay. In the course of the AAPH-induced oxidative DNA damage, all tested compounds exhibit inhibitory activity unlike CatH2. Among the compounds under investigation, three catechol thioethers reveal mostly antioxidant properties. Several compounds with polar groups possess dual anti/prooxidant activity. The thiolation of catechol ring can change properties of target thiothers by a variation of different organic fragments at sulfur atom.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim JY, Cho JY, Ma YK, Lee YG, Moon JH (2014) Free Radic Biol Med 71:379

    Article  CAS  PubMed  Google Scholar 

  2. Roginsky V, Barsukova T, Loshadkin D, Pliss E (2003) Chem Phys Lipids 125:49

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Ou Y, Chen S, Li X, Cheng H, Jia X, Wang D, Zhou G-C (2010) Eur J Med Chem 45:2147

    Article  CAS  PubMed  Google Scholar 

  4. Cho J-Y, Park KY, Kim S-J, Oh S, Moon J-H (2015) Biosci Biotechnol Biochem 79:1915

    Article  CAS  PubMed  Google Scholar 

  5. Ryckeweart L, Sacconnay L, Carrupt P-A, Nurisso A, Simoes-Pires C (2014) Toxicol Lett 229:374

    Article  CAS  Google Scholar 

  6. Hong Y, Sengupta S, Hur W, Sim T (2015) J Med Chem 58:3739

    Article  CAS  PubMed  Google Scholar 

  7. Soeda Y, Yoshikawa M, Almeida OFX, Sumioka A, Maeda S, Osada H, Kondoh Y, Saito A, Miyasaka T, Kimura T, Suzuki M, Koyama H, Yoshiike Y, Sugimoto H, Ihara Y, Takashima A (2015) Nat Commun 6:10216

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Kim W, Yum S, Hong S, Oh J-E, Lee J-W, Kwak M-K, Park EJ, Na DH, Jung Y (2013) Free Radic Biol Med 65:552

    Article  CAS  PubMed  Google Scholar 

  9. Denisov ET, Afanas’ev IB (2005) Oxidation and antioxidants in organic chemistry and biology. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Feng M, Tang B, Liang S, Jiang X (2016) Curr Top Med Chem 16:1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viglianisi C, Bartolozzi M, Pedulli GF, Amorati R, Menichetti S (2011) Chem Eur J 17:12396

    Article  CAS  PubMed  Google Scholar 

  12. Poon J, Yan J, Singh VP, Gates PJ, Engman L (2016) J Org Chem 81:12540

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Yan J, Poon J, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S (2016) Angew Chem Int Ed 55:3729

    Article  CAS  Google Scholar 

  14. Menichetti S, Amorati R, Meoni V, Tofani L, Caminati G, Viglianisi C (2016) Org Lett 18:5464

    Article  CAS  PubMed  Google Scholar 

  15. Poon J, Singh VP, Yan J, Engman L (2015) Chem Eur J 21:2447

    Article  CAS  PubMed  Google Scholar 

  16. Shadyro OI, Timoshchuk VA, Polozov GI, Povalishev VN, Andreeva OT, Zhelobkovich VE (1995) Khim-Farm Zhurn 29:841

    Google Scholar 

  17. Picklo MJ, Amarnath V, Graham DG, Montine TJ (1999) Free Radic Biol Med 27:271

    Article  CAS  PubMed  Google Scholar 

  18. Jardim GAM, Oliveira WXC, de Freitas RP, Menna-Barreto RFS, Silva TL, Goulart MOF, da Silva Jr EN (2018) Org Biomol Chem 16:1686

    Article  CAS  PubMed  Google Scholar 

  19. Tamura K, Southwick EC, Kerns J, Rosi K, Carr BI, Wilcox C, Lazo JS (2000) Cancer Res 60:1317

    CAS  PubMed  Google Scholar 

  20. Besset T, Braud E, Jarray R, Garbay C, Kolb S, Leo P-M, Morin C (2011) Eur J Chem 2:423

    Article  CAS  Google Scholar 

  21. Shaaban S, Diestel R, Hinkelmann B, Muthukumar Y, Verma RP, Sasse F, Jacob C (2012) Eur J Med Chem 58:192

    Article  CAS  PubMed  Google Scholar 

  22. Deniz NG, Ozyurek M, Tufan AN, Apak R (2015) Monatsh Chem 146:2117

    Article  CAS  Google Scholar 

  23. Kuropatov V, Klementieva S, Fukin G, Mitin A, Ketkov S, Budnikova Y, Cherkasov V, Abakumov G (2010) Tetrahedron 66:7605

    Article  CAS  Google Scholar 

  24. Cherkasov V, Abakumov G, Fukin G, Klementieva S, Kuropatov V (2012) Chem Eur J 18:13821

    Article  CAS  PubMed  Google Scholar 

  25. Chalkov NO, Cherkasov VK, Abakumov GA, Romanenko GV, Ketkov SYu, Smolyaninov IV, Starikov AG, Kuropatov VA (2014) Eur J Org Chem 4571

  26. Regan CJ, Walton DP, Shafaat OS, Dougherty DA (2017) J Am Chem Soc 139:4729

    Article  CAS  PubMed  Google Scholar 

  27. Walton DP, Dougherty DA (2017) J Am Chem Soc 139:4655

    Article  CAS  PubMed  Google Scholar 

  28. Pointillart F, Klementieva S, Kuropatov V, Le Gal Y, Golhen S, Cador O, Cherkasov V, Ouahab L (2012) Chem Commun 48:714

    Article  CAS  Google Scholar 

  29. Martyanov KA, Cherkasov VK, Abakumov GA, Samsonov MA, Khrizanforova VV, Budnikova YH, Kuropatov VA (2016) Dalton Trans 45:7400

    Article  CAS  PubMed  Google Scholar 

  30. Loginova NV, Koval’chuk TV, Faletrov YV, Halauko YS, Osipovich NP, Polozov GI, Zheldakova RA, Gres AT, Halauko AS, Azarko II, Shkumatov VM, Shadyro OI (2011) Polyhedron 30:2581

    Article  CAS  Google Scholar 

  31. Tesema YT, Pham DM, Franz KJ (2006) Inorg Chem 45:6102

    Article  CAS  PubMed  Google Scholar 

  32. Hillard EA, de Abreu FC, Ferreira DCM, Jaouen G, Goulart MOF, Amatore C (2008) Chem Commun 2612

  33. De Paiva YG, Ferreira FR, Silva TL, Labbé E, Buriez O, Amatore C, Goulart MOF (2015) Curr Top Med Chem 15:136

    Article  CAS  PubMed  Google Scholar 

  34. Peyrat-Maillard MN, Bonnely S, Berset C (2000) Talanta 51:709

    Article  CAS  PubMed  Google Scholar 

  35. Ziyatdinova G, Budnikov H (2015) Monatsh Chem 146:741

    Article  CAS  Google Scholar 

  36. Tomaskova M, Chylkova J, Mikysek T, Jehlicka V (2016) Monatsh Chem 147:231

    Article  CAS  Google Scholar 

  37. Beiginejad H, Nematollahi D (2016) Monatsh Chem 147:329

    Article  CAS  Google Scholar 

  38. Tandon VK, Maurya HK (2009) Tetrahedron Lett 50:5896

    Article  CAS  Google Scholar 

  39. Goksel FS, Bayrak N, Ibis C (2014) Phosphor. Sulfur Silicon Relat Elem 189:113

    Article  CAS  Google Scholar 

  40. Smolyaninov IV, Pitikova OV, Rychagova ES, Korchagina EO, Poddel’sky AI, Smolyaninova SA, Berberova NT (2016) Russ Chem Bull 65:2861

    Article  CAS  Google Scholar 

  41. Zeng C-C, Liu F-J, Ping D-W, Hu L-M, Cai Y-L, Zhong R-G (2009) Tetrahedron 65:4505

    Article  CAS  Google Scholar 

  42. Tammari E, Mirazi N, Nematollahi D (2006) Mendeleev Commun 16:285

    Article  CAS  Google Scholar 

  43. Williams LL, Webster RD (2004) J Am Chem Soc 126:12441

    Article  CAS  PubMed  Google Scholar 

  44. Astudillo PD, Tiburcio J, Gonzalez FJ (2007) J Electroanal Chem 604:57

    Article  CAS  Google Scholar 

  45. Beiginejad H, Nematollahi D, Bayat M (2013) J Electrochem Soc 160:H693

    Article  CAS  Google Scholar 

  46. Lund H, Hammrich O (2001) Organic electrochemistry, 4th edn. Marcel Dekker, New York

    Google Scholar 

  47. Foti MC (2015) J Agric Food Chem 63:8765

    Article  CAS  PubMed  Google Scholar 

  48. Bondet V, Brand-Williams W, Berset C (1997) Food Sci Technol 28:25

    Google Scholar 

  49. Chavarria D, Silva T, Martins D, Bravo J, Summavielle T, Garrido J, Borges F (2015) Med Chem Commun 6:1043

    Article  CAS  Google Scholar 

  50. Sanchez-Moreno C, Larrauri JA, Saura Calixto F (1998) J Sci Food Agric 76:270

    Article  CAS  Google Scholar 

  51. Smolyaninov IV, Poddel’sky AI, Smolyaninova SA, Luzhnova SA, Berberova NT (2015) Russ Chem Bull Russ 64:2223

    Article  CAS  Google Scholar 

  52. Saito S, Kawabata J (2006) Helv Chim Acta 89:1395

    Article  CAS  Google Scholar 

  53. Saito S, Kawabata J (2006) Helv Chim Acta 89:821

    Article  CAS  Google Scholar 

  54. Abakumov GA, Cherkasov VK, Piskunov AV, Lado AV, Fukin GK, Abakumova LG (2006) Russ Chem Bull 55:1146

    Article  CAS  Google Scholar 

  55. Samuni AM, Chuang EY, Krishna MC, Stein W, DeGraff W, Russo A, Mitchell JB (2003) Proc Natl Acad Sci USA 100:5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao F, Liu Z-Q (2009) J Phys Org Chem 22:791

    Article  CAS  Google Scholar 

  57. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free Radic Biol Med 32:1102

    Article  CAS  PubMed  Google Scholar 

  58. Udupi V, Rice-Evans C (1992) Free Radic Res Commun 16:315

    Article  CAS  PubMed  Google Scholar 

  59. Grinberg L, Fibach E, Amer J, Atlas D (2005) Free Radic Biol Med 38:136

    Article  CAS  PubMed  Google Scholar 

  60. Ximenes V, Lopes MG, Petronio MS, Regasini LO, Siqueira Silva DH, Da Fonesca LM (2010) J Agric Food Chem 58:5355

    Article  CAS  PubMed  Google Scholar 

  61. Shahidi F, Zhong Y (2011) J Agric Food Chem 59:3499

    Article  CAS  PubMed  Google Scholar 

  62. Callaway JK, Beart PM, Jarrott B (1998) J Pharmacol Toxicol Methods 39:155

    Article  CAS  PubMed  Google Scholar 

  63. Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals. Pergamon Press, Oxford

    Google Scholar 

  64. Maslovskaya LA, Petrikevch DK, Timoshchuk VA, Shadyro OI (1996) Zhurn Obshchei Khimii 66:1899 (in Russian)

    CAS  Google Scholar 

  65. Villano D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcya-Parrilla MC (2007) Talanta 71:230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation under Grant 17-13-01168. The NMR and EPR investigations were performed with the use of the equipment of the Analytical Centre of IOMC RAS (Nizhniy Novgorod).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Smolyaninov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolyaninov, I., Pitikova, O., Korchagina, E. et al. Electrochemical behavior and anti/prooxidant activity of thioethers with redox-active catechol moiety. Monatsh Chem 149, 1813–1826 (2018). https://doi.org/10.1007/s00706-018-2264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2264-1

Keywords

Navigation