Skip to main content

Advertisement

Log in

Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Triclosan and chlorophene are chlorinated phenols used as antimicrobial agents. Both compounds are ordinarily detected in aquatic environments. The aim of this study is to prove the reactivity of three different metallic alloys used as common reductants such as Raney Al–Ni (50% Al–50% Ni), Devarda’s Al–Cu–Zn alloy (45% Al–50% Cu–5% Zn), and Arnd’s Cu–Mg alloy (60% Cu–40% Mg) for the hydrodechlorination of these agents in alkaline aqueous solution at ambient temperature and investigating such parameters as type and amount of reagents. The hydrodechlorination of triclosan was found to be completed when 5 molar equivalents of Al in the form of Raney Al–Ni alloy (0.27 g) and 20 equivalents of NaOH (0.8 g) per 1 mmol of triclosan were used and the reaction was performed at ambient temperature and pressure during 20 h of vigorous stirring. Chlorophene was completely dechlorinated using 2.5 equivalents of Al (0.14 g) and 10 equivalents of NaOH (0.4 g) per 1 mmol of chlorophene under the same conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gosh A, Gupta SS, Bartos MJ, Hangun Y, Vuocolo LD, Steinhoff BA, Noser CA, Horner D, Mayer S, Inderhees K, Horwitz CP, Spatz J, Ryabov AD, Mondal S, Collins TJ (2001) Pure Appl Chem 73:113

    Article  Google Scholar 

  2. Laine DF, Cheng IF (2007) Microchem J 85:183

    Article  CAS  Google Scholar 

  3. Rodan BD, Pennington DW, Eckley N, Boethling RS (1999) Environ Sci Technol 33:3482

    Article  CAS  Google Scholar 

  4. Bedoux G, Roig B, Thomas O, Dupont V, Le Bot B (2012) Environ Sci Pollut Res Int 19:1044

    Article  CAS  PubMed  Google Scholar 

  5. Gilbert R, Williams P (1987) Br J Clin Pharmacol 23:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crinnion WJ (2012) Altern Med Rev 17:6

    PubMed  Google Scholar 

  7. Cutter CN (1999) J Food Prot 62:474

    Article  CAS  PubMed  Google Scholar 

  8. Perencevich EN, Wong MT, Harris AD (2001) Am J Infect Control 29:281

    Article  CAS  PubMed  Google Scholar 

  9. Adolfsson-Erici M, Pettersson M, Parkkonen J, Sturve J (2002) Chemosphere 46:1485

    Article  CAS  PubMed  Google Scholar 

  10. Dayan AD (2007) Food Chem Toxicol 45:125

    Article  CAS  PubMed  Google Scholar 

  11. Chau WC, Wu J-I, Cai Z (2008) Chemosphere 73:S13

    Article  CAS  PubMed  Google Scholar 

  12. Bester K (2003) Water Res 37:3891

    Article  CAS  PubMed  Google Scholar 

  13. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338

    Article  CAS  PubMed  Google Scholar 

  14. Kanetoshi A, Ogawa H, Katsura E, Kaneshima H, Miura T (1988) J Chromatogr 442:289

    Article  CAS  PubMed  Google Scholar 

  15. Bester K (2005) Arch Environ Contam Toxicol 49:9

    Article  CAS  PubMed  Google Scholar 

  16. Latch DE, Packer JL, Arnold WA, McNeill K (2003) J Photochem Photobiol A Chem 158:63

    Article  CAS  Google Scholar 

  17. Benitez FJ, Acero JL, Garcia-Reyes JF, Real FJ, Roldan G (2013) Chem Eng J 230:447

    Article  CAS  Google Scholar 

  18. Zhang H, Huang C-H (2003) Environ Sci Technol 37:2421

    Article  CAS  PubMed  Google Scholar 

  19. Yamarik TA (2003) Int J Toxicol 23:S1

    Google Scholar 

  20. Rostkowski P, Horwood J, Shears JA, Lange A, Oladapo FO, Besselink HT, Tyler CR, Hill EM (2011) Environ Sci Technol 45:10660

    Article  CAS  PubMed  Google Scholar 

  21. Tundo P, Perosa A, Selva M, Zinovyev S (2001) Appl Catal B 32:L1

    Article  CAS  Google Scholar 

  22. Rodríguez JG, Lafuente A (2002) Tetrahedron Lett 43:9645

    Article  Google Scholar 

  23. Zheng Z, Yuan S, Liu Y, Lu X, Wan J, Wu X, Chen J (2009) J Hazard Mater 170:895

    Article  CAS  PubMed  Google Scholar 

  24. Choi JH, Kim ZH (2009) J Hazard Mater 166:984

    Article  CAS  PubMed  Google Scholar 

  25. Ghaffar A, Tabata M, Mashiatullah A, Allamer AS (2013) Environ Chem Lett 11:197

    Article  CAS  Google Scholar 

  26. Liu G-B, Tashiro M, Thiemann T (2009) Tetrahedron 65:2497

    Article  CAS  Google Scholar 

  27. Yang B, Zhang F, Deng S, Yu G, Zhang H, Xiao J, Shi L, Shen A (2012) Chem Eng J 209:79

    Article  CAS  Google Scholar 

  28. Yang B, Zhang J, Zhang Y, Deng S, Yu G, Wu J, Zhang H, Liu J (2014) Chem Eng J 250:222

    Article  CAS  Google Scholar 

  29. Ghaffar A, Tabata M (2009) Waste Manag 29:3004

    Article  CAS  PubMed  Google Scholar 

  30. Ghaffar A, Tabata M (2010) Green Chem Lett Rev 3:179

    Article  CAS  Google Scholar 

  31. Weidlich T, Krejčová A, Prokeš L (2010) Monatsh Chem 141:1015

    Article  CAS  Google Scholar 

  32. Weidlich T, Prokeš L (2011) Cent Eur J Chem 9:590

    CAS  Google Scholar 

  33. Weidlich T, Krejčová A, Prokeš L (2013) Monatsh Chem 144:155

    Article  CAS  Google Scholar 

  34. Weidlich T, Prokeš L, Pospíšilová D (2013) Cent Eur J Chem 11:979

    CAS  Google Scholar 

  35. Weidlich T, Opršal J, Krejčová A, Jašúrek B (2015) Monatsh Chem 146:613

    Article  CAS  Google Scholar 

  36. Loftsson T, Össurardóttir ÍB, Thorsteinsson T, Duan M, Másson M (2005) J Incl Phenom Macrocycl Chem 52:109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Technology Agency of the Czech Republic TG02010058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Weidlich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérko, J., Kamenická, B. & Weidlich, T. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys. Monatsh Chem 149, 1777–1786 (2018). https://doi.org/10.1007/s00706-018-2230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2230-y

Keywords

Navigation