Skip to main content
Log in

The inclusion complexation of daidzein with β-cyclodextrin and 2,6-dimethyl-β-cyclodextrin: a theoretical and experimental study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Daidzein is an isoflavone of the group of phytoestrogens extracted from soybeans and other legumes. As its structure is relatively similar to that of the hormone estrogen, daidzein is able to bind with estrogen receptors leading to a reduced postmenopausal women symptom. A common problem of the compounds of this group is the rather low water solubility with the consequence of limited pharmaceutical applications. Inclusion complexation between daidzein and two β-CDs (β-CD and DM-β-CD) was investigated by theoretical and experimental techniques. Based on multiple MD simulations in combination with different binding-free energy calculations, the most preferential mode of daidzein binding to cyclodextrins is the insertion of the chromone ring fitting well into the hydrophobic cavity. All four methods of binding-free energy calculations (MM/PBSA, MM/GBSA, QM/PBSA, and QM/GBSA) predict the binding affinity of the daidzein/DM-β-CD complex significantly higher than the daidzein/β-CD. Following the same trend, the experimental results also indicated the enhancement of solubility and stability of the daidzein/DM-β-CD complex. Moreover, it was found that the complexation process was favorably enthalpy driven.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu O, Jung WS, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Plant Physiol 124:781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borras C, Gambini J, Gomez-Cabrera MC, Sastre J, Pallardo FV, Mann GE, Vina J (2006) FASEB J 20:2136

    Article  CAS  PubMed  Google Scholar 

  3. Jackman KA, Woodman OL, Chrissobolis S, Sobey CG (2007) Brain Res 1141:99

    Article  CAS  PubMed  Google Scholar 

  4. Park JS, Woo MS, Kim DH, Hyun JW, Kim WK, Lee JC, Kim HS (2007) J Pharmacol Exp Ther 320:1237

    Article  CAS  PubMed  Google Scholar 

  5. Chinta SJ, Ganesan A, Reis-Rodrigues P, Lithgow GJ, Andersen JK (2013) Neurotox Res 23:145

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Y, Lee AS (1998) J Natl Cancer Inst 90:381

    Article  CAS  PubMed  Google Scholar 

  7. Park DK, Choi WS, Park HJ (2012) J Agric Food Chem 60:2309

    Article  CAS  PubMed  Google Scholar 

  8. Li HQ, Xue JY, Shi L, Gui SY, Zhu HL (2008) Eur J Med Chem 43:662

    Article  CAS  PubMed  Google Scholar 

  9. Hall WL, Vafeiadou K, Hallund J, Bugel S, Reimann M, Koebnick C, Zunft HJ, Ferrari M, Branca F, Dadd T, Talbot D, Powell J, Minihane AM, Cassidy A, Nilsson M, Dahlman-Wright K, Gustafsson JA, Williams CM (2006) Am J Clin Nutr 83:592

    Article  CAS  PubMed  Google Scholar 

  10. Zhuo XG, Melby MK, Watanabe S (2004) J Nutr 134:2395

    Article  CAS  PubMed  Google Scholar 

  11. Lichtenstein AH (1998) J Nutr 128:1589

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, Yang HJ, Holman CDJ (2009) Breast Cancer Res Treat 118:553

    Article  CAS  PubMed  Google Scholar 

  13. Miltyk W, Craciunescu CN, Fischer L, Jeffcoat RA, Koch MA, Lopaczynski W, Mahoney C, Jeffcoat RA, Crowell J, Paglieri J, Zeisei SH (2003) Am J Clin Nutr 77:875

    Article  CAS  PubMed  Google Scholar 

  14. Frankenfeld CL, McTiernan A, Thomas WK, LaCroix K, McVarish L, Holt VL, Schwartz SM, Lampe JW (2006) Maturitas 53:315

    Article  CAS  PubMed  Google Scholar 

  15. Kelly RM, Dijkhuizen L, Leemhuis H (2009) Appl Microbiol Biotechnol 84:119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loftsson T, Brewster ME (2010) J Pharm Pharmacol 62:1607

    Article  CAS  PubMed  Google Scholar 

  17. Loftsson T, Brewster ME (1996) J Pharm Sci 85:1017

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Loh XJ (2008) Adv Drug Deliv Rev 60:1000

    Article  CAS  PubMed  Google Scholar 

  19. Yu Z, Cui M, Yan C, Song F, Liu Z, Liu S (2007) Rapid Commun Mass Spectrom 21:683

    Article  CAS  PubMed  Google Scholar 

  20. Bouquet W, Ceelen W, Adriaens E, Almeida A, Quinten T, De Vos F, Pattyn P, Peeters M, Remon JP, Vervaet C (2010) Ann Surg Oncol 17:2510

    Article  CAS  PubMed  Google Scholar 

  21. Merkus FW, Verhoef JC, Marttin E, Romeijn SG, van der Kuy PH, Hermens WA, Schipper NG (1999) Adv Drug Deliv Rev 36:41

    Article  CAS  PubMed  Google Scholar 

  22. Daruhazi AE, Szente L, Balogh B, Matyus P, Beni S, Takacs M, Gergely A, Horvath P, Szoke E, Lemberkovics E (2008) J Pharm Biomed Anal 48:636

    Article  CAS  PubMed  Google Scholar 

  23. Borghetti GS, Pinto AP, Lula IS, Sinisterra RD, Teixeira HF, Bassani VL (2011) Drug Dev Ind Pharm 37:886

    Article  CAS  PubMed  Google Scholar 

  24. Yatsu FKJ, Koester LS, Lula I, Passos JJ, Sinisterra R, Bassani VL (2013) Carbohydr Polym 98:726

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Tan T, Hetényi C, van der Spoel D (2013) J Chem Theo Comput 9:4542

    Article  CAS  Google Scholar 

  26. Pahari B, Sengupta B, Chakraborty S, Thomas B, McGowan D, Sengupta PK (2013) J Photochem Photobiol B 118:33

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Tan T, Hetényi C, Lv Y, van der Spoel D (2014) J Phys Chem C 118:7163

    Article  CAS  Google Scholar 

  28. Szejtli J (1998) Chem Rev 98:1743

    Article  CAS  PubMed  Google Scholar 

  29. Del Valle E (2004) Process Biochem 39:1033

    Article  CAS  Google Scholar 

  30. Nutho B, Khuntawee W, Rungnim C, Pongsawasdi P, Wolschann P, Karpfen A, Kungwan N, Rungrotmongkol T (2014) Beilstein J Org Chem 10:2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sangpheak W, Khuntawee W, Wolschann P, Pongsawasdi P, Rungrotmongkol T (2014) J Mol Graph Model 50:10

    Article  CAS  PubMed  Google Scholar 

  32. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant C, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09. Gaussian, Inc, Pittsburgh (Dalton 2.0 Program Package)

  33. Higuchi TCK (1965) Adv Anal Chem Instrum 4:117

    CAS  Google Scholar 

  34. Ranatunga RPJ, Carr PW (2000) Anal Chem 72:5679

    Article  CAS  PubMed  Google Scholar 

  35. Charlton SA, Coym JW (2012) J Chromatogr 1266:69

    Article  CAS  Google Scholar 

  36. Viernstein H, Weiss-Greiler P, Wolschann P (2002) J Incl Phenom Macrocycl Chem 44:235

    Article  CAS  Google Scholar 

  37. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theo Comput 6:2872

    Article  CAS  Google Scholar 

  38. Snor W, Liedl E, Weiss-Greiler P, Karpfen A, Viernstein H, Wolschann P (2007) Chem Phys Lett 441:159

    Article  CAS  Google Scholar 

  39. Walker RC, Crowley MF, Case DA (2008) J Comput Chem 29:1019

    Article  CAS  PubMed  Google Scholar 

  40. Khuntawee W, Rungrotmongkol T, Hannongbua S (2012) J Chem Info Model 52:76

    Article  CAS  Google Scholar 

  41. Meeprasert A, Khuntawee W, Kamlungsua K, Nunthaboot N, Rungrotmongkol T, Hannongbua S (2012) J Mol Graph Model 38:148

    Article  CAS  PubMed  Google Scholar 

  42. Kaiyawet N, Rungrotmongkol T, Hannongbua S (2013) J Chem Info Model 53:1315

    Article  CAS  Google Scholar 

  43. Luty BA, van Gunsteren WF (1996) J Phys Chem 100:2581

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Research University Project, Office of Higher Education Commission (WCU-023-FW-57). We also thank the Structural and Computational Biology Research Group, Special Task Force for Activating Research (STAR). N.K. would like to thank Center of Excellence in Materials Science and Technology, Chiang Mai University for the financial support. By travel grants for short research visit, research reported in this publication was also supported by the ASEAN-European Academic University Network (ASEA-UNINET). The Computational Chemistry Center of Excellent, and the Vienna Scientific Cluster (VSC-2) were acknowledged for facilities and computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanyada Rungrotmongkol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rungrotmongkol, T., Chakcharoensap, T., Pongsawasdi, P. et al. The inclusion complexation of daidzein with β-cyclodextrin and 2,6-dimethyl-β-cyclodextrin: a theoretical and experimental study. Monatsh Chem 149, 1739–1747 (2018). https://doi.org/10.1007/s00706-018-2209-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2209-8

Keywords

Navigation