Skip to main content
Log in

Synthesis and crystal structures of new phosphoric triamides: study of intermolecular interactions by semi-empirical calculations and Hirshfeld surface analysis

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In the present paper, crystal structures and Hirshfeld surface analyses of two new phosphoric triamides [2,3,6-F3–C6H2C(O)NH]P(O)(X)2 (X=N(CH3)C6H11 and N(C2H5)2) and an improved model of [OH8C4N]3P(O) are investigated. Moreover, the semi-classical density sums (PIXEL) method, which enables the calculation of interaction energies for molecule–molecule pairs, and AIM calculations were used to evaluate intermolecular forces in the studied compounds. The previously reported structure [2,6-F2-C6H3C(O)NH]P(O)[NHC(CH3)3]2 with a [C(O)NH]P(O)[NH(C)]2 segment, which is different than the [C(O)NH]P(O)[N(C)(C)]2 segment in structures [2,3,6-F3–C6H2C(O)NH]P(O)(X)2, is compared to those of the newly determined structures. The Hirshfeld surface method shows that the crystal cohesions of structures [2,3,6-F3–C6H2C(O)NH]P(O)(X)2 are established via H···H, O···H/H···O, C···H/H···C, and F···H/H···F contacts, while for [OH8C4N]3P(O), H···H and O···H/H···O are the dominant contacts. From PIXEL and AIM calculations and the decomposition of the interaction energies for different molecular pairs, it is shown that the donor and acceptor capability of the atoms involved in an interaction introduces the nature and strength of that interaction. The more acidic NCP–H unit in the C(O)NHP(O) segment (compared to the NP–H unit in the P(O)[NH(C)]2 segment) and the higher H-atom acceptor group P=O (compared to C=O) in the studied structures form the strongest NCP–H···O=P intermolecular hydrogen bond.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hoon Kwon C, Young Moon K, Baturay N, Shirota FN (1991) J Med Chem 34:588

    Article  Google Scholar 

  2. Jain M, Fan J, Baturay NZ, Kwon C-H (2004) J Med Chem 47:3843

    Article  CAS  PubMed  Google Scholar 

  3. Hu L, Yu C, Jiang Y, Han J, Li Z, Browne P, Race PR, Knox RJ, Searle PF, Hyde EI (2003) J Med Chem 46:4818

    Article  CAS  PubMed  Google Scholar 

  4. Quintero L, Sánchez-Vazquez M, Cruz-Gregorio S, Sartillo-Piscil F (2010) J Org Chem 75:5852

    Article  CAS  PubMed  Google Scholar 

  5. Font M, Domínguez M-J, Sanmartín C, Palop JA, San-Francisco S, Urrutia O, Houdusse F, García-Mina JM (2008) J Agric Food Chem 56:8451

    Article  CAS  PubMed  Google Scholar 

  6. Domínguez MJ, Sanmartín C, Font M, Palop JA, San Francisco S, Urrutia O, Houdusse F, García-Mina JM (2008) J Agric Food Chem 56:3721

    Article  CAS  PubMed  Google Scholar 

  7. Nakashima D, Yamamoto H (2006) J Am Chem Soc 128:9626

    Article  CAS  PubMed  Google Scholar 

  8. Nishikawa Y, Nakano S, Tahira Y, Terazawa K, Yamazaki K, Kitamura CH, Hara O (2016) Org Lett 18:2004

    Article  CAS  PubMed  Google Scholar 

  9. Pourayoubi M, Toghraee M, Zhu J, Dušek M, Bereciartua PJ, Eigner V (2014) CrystEngComm 16:10870

    Article  CAS  Google Scholar 

  10. Palatinus L, Brázda P, Boullay P, Perez O, Klementová M, Petit S, Eigner V, Zaarour M, Mintova S (2017) Science 355:166

    Article  CAS  PubMed  Google Scholar 

  11. Capelli SC, Bürgi H-B, Dittrich B, Grabowsky S, Jayatilaka D (2014) IUCrJ 1:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woińska M, Grabowsky S, Dominiak PM, Woźniak K, Jayatilaka D (2016) Sci Adv 2:e1600192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem Eur J 4:2136

    Article  CAS  Google Scholar 

  14. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378

    Article  CAS  Google Scholar 

  15. Dunitz JD, Gavezzotti A, Rizzato S (2014) Cryst Growth Des 14:357

    Article  CAS  Google Scholar 

  16. Shukla R, Shripanavar C, Chopra D, Bubbly SG, Gudennavar SB (2015) Struct Chem Cryst Comm 1:1

    Google Scholar 

  17. Gavezzotti A (2011) New J Chem 35:1360

    Article  CAS  Google Scholar 

  18. Pourayoubi M, Tarahhomi A, Rheingold AL, Golen JA (2010) Acta Cryst E66:o3159

    Google Scholar 

  19. Romming C, Songstad J (1982) Acta Chem Scand A 36:665

    Article  Google Scholar 

  20. Tarahhomi A, Pourayoubi M, Golen JA, Zargaran P, Elahi B, Rheingold AL, Leyva Ramírez MA, Mancilla Percino T (2013) Acta Cryst B69:260

    Google Scholar 

  21. Tarahhomi A, Pourayoubi M, Rheingold AL, Golen JA (2011) Struct Chem 22:201

    Article  CAS  Google Scholar 

  22. Pourayoubi M, Tarahhomi A, Saneei A, Rheingold AL, Golen JA (2011) Acta Cryst C67:o265

    Google Scholar 

  23. Pourayoubi M, Toghraee M, Divjakovic V, van der Lee A, Mancilla Percino T, Leyva Ramírez MA, Saneei A (2013) Acta Cryst B69:184

    Article  Google Scholar 

  24. Mazur L, Koziol AE, Jarzembska KN, Paprocka R, Modzelewska-Banachiewicz B (2017) Cryst Growth Des 17:2104

    Article  CAS  Google Scholar 

  25. Martin AD, Britton J, Easun TL, Blake AJ, Lewis W, Schröder M (2015) Cryst Growth Des 15:1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Agilent CrysAlis PRO (2011) Agilent technologies. Yarnton, Oxfordshire

    Google Scholar 

  27. Palatinus L, Chapuis G (2007) J Appl Cryst 40:786

    Article  CAS  Google Scholar 

  28. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Cryst 36:1487

    Article  CAS  Google Scholar 

  29. Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Cryst 43:1100

    Article  CAS  Google Scholar 

  30. Spek AL (2009) Acta Cryst D65:148

    Google Scholar 

  31. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Cryst 41:466

    Article  CAS  Google Scholar 

  32. de la Flor G, Orobengoa D, Tasci E, Perez-Mato JM, Aroyo MI (2016) J Appl Cryst 49:653

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision B.04. Gaussian, Inc, Pittsburgh, PA

  34. Dunitz JD, Gavezzotti A (2012) Cryst Growth Des 12:5873

    Article  CAS  Google Scholar 

  35. Feynman RP (1989) The Feynman lectures on physics, vol 2. Addison-Wesley, Reading

    Google Scholar 

  36. London F (1937) Trans Faraday Soc 33:8

    Article  CAS  Google Scholar 

  37. Kauzmann W (1957) Quantum chemistry, an introduction. Academic Press, New York, p 305

    Google Scholar 

  38. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, New York

    Google Scholar 

  39. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia

  40. McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Cryst B60:627

    Article  CAS  Google Scholar 

  41. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 3814

  42. Spackman MA, Jayatilaka D (2009) Cryst EngComm 11:19

    Article  CAS  Google Scholar 

  43. Fabbiani FPA, Leech CK, Shankland K, Johnston A, Fernandes P, Florence AJ, Shankland N (2007) Acta Cryst C63:o659

    Google Scholar 

Download references

Acknowledgements

Support of this investigation by Semnan University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atekeh Tarahhomi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarahhomi, A., van der Lee, A. Synthesis and crystal structures of new phosphoric triamides: study of intermolecular interactions by semi-empirical calculations and Hirshfeld surface analysis. Monatsh Chem 149, 1759–1776 (2018). https://doi.org/10.1007/s00706-018-2186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2186-y

Keywords

Navigation