Skip to main content
Log in

Theoretical study on the elimination kinetics in the gas phase of allyl methyl compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The thermal decomposition kinetics of allyl methyl amine, allyl methyl ether, and allyl methyl sulfide in the gas phase has been studied theoretically using the M06-2x/aug-cc-pVTZ quantum chemical approach. The observed activation parameters are consistent with a concerted unimolecular mechanism involving a non-planar cyclic six-membered transition state. Based on the optimized ground state geometries, a natural bond orbital analysis of donor–acceptor interactions reveals that the stabilization energies corresponding to the electronic delocalization from the lone-pair (LP) non-bonding orbitals on the heteroatom to the neighboring \(\sigma_{{{\text{C2}} - {\text{C3}}}}^{*}\) antibonding orbitals decrease from allyl methyl amine to allyl methyl sulfide. This delocalization fairly explains the increase of occupancies of LP orbitals on the heteroatom from allyl methyl sulfide to allyl methyl amine. The results also suggest that the kinetics of the thermolysis of the studied compounds are dominated by \({\text{LP}}\, \to \,\sigma^{*}\) electronic delocalization effects. Analysis of bond order, bond indices, and synchronicity parameters demonstrates that these reactions proceed through a concerted and slightly asynchronous mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vitins P, Egger KW (1974) J Chem Soc Perkin Trans 2:1289

    Article  Google Scholar 

  2. Egger KW, Vitins P (1974) Int J Chem Kinet 6:429

    Article  CAS  Google Scholar 

  3. Kwart H, Sarner SF, Slutsky J (1973) J Am Chem Soc 95:5234

    Article  CAS  Google Scholar 

  4. Martin G, Ropero M, Avila R (1982) Phosphorus Sulfur Relat Elem 13:213

    Article  CAS  Google Scholar 

  5. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  6. Johnston HS (1966) Gas phase reaction rate theory. Roland Press, New York

    Google Scholar 

  7. Laidler KJ (1969) Theories of chemical reaction rates. McGraw-Hill, New York

    Google Scholar 

  8. Weston RE, Schwartz HA (1972) Chemical kinetics. Prentice-Hall, New York

    Google Scholar 

  9. Rapp D (1972) Statistical mechanics. Holt, Rinehart, and Winston, New York

    Google Scholar 

  10. Nikitin EE (1974) Theory of elementary atomic and molecular processes in gases. Clarendon Press, Oxford

    Google Scholar 

  11. Smith IWM (1980) Kinetics and dynamics of elementary gas reactions. Butterworths, London

    Google Scholar 

  12. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  13. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  14. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  15. Robinson PJ, Holbrook KA (1972) Unimolecular reactions. Wiley, New York

    Google Scholar 

  16. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  17. Eyring H, Lin SH, Lin SM (1980) Basic chemical kinetics. Wiley, New York

    Google Scholar 

  18. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    Article  CAS  Google Scholar 

  19. Badenhoop JK, Weinhold F (1999) Int J Quantum Chem 72:269

    Article  CAS  Google Scholar 

  20. Hammond GS (1953) J Am Chem Soc 77:334

    Article  Google Scholar 

  21. Agmon N, Levine RD (1977) Chem Phys Lett 52:197

    Article  CAS  Google Scholar 

  22. Bickelhaupt FM, Houk KN (2017) Angew Chem Int Ed 56:10070

    Article  CAS  Google Scholar 

  23. Ess DH, Houk KN (2007) J Am Chem Soc 129:10646

    Article  CAS  PubMed  Google Scholar 

  24. Legault CY, Garcia Y, Merlic CA, Houk KN (2007) J Am Chem Soc 129:12664

    Article  CAS  PubMed  Google Scholar 

  25. Ess DH, Houk KN (2008) J Am Chem Soc 130:10187

    Article  CAS  PubMed  Google Scholar 

  26. Hayden AE, Houk KN (2009) J Am Chem Soc 131:4084

    Article  CAS  PubMed  Google Scholar 

  27. Schoenebeck F, Ess DH, Jones GO, Houk KN (2009) J Am Chem Soc 131:8121

    Article  CAS  PubMed  Google Scholar 

  28. van Zeist W-J, Bickelhaupt FM (2010) Org Biomol Chem 8:3118

    Article  CAS  PubMed  Google Scholar 

  29. Fernández I, Cossío FP, Bickelhaupt FM (2011) J Org Chem 76:2310

    Article  CAS  PubMed  Google Scholar 

  30. Fernández I, Bickelhaupt FM (2012) J Comput Chem 33:509

    Article  CAS  PubMed  Google Scholar 

  31. Fernández I, Bickelhaupt FM, Cossío FP (2012) Chem Eur J 18:12395

    Article  CAS  PubMed  Google Scholar 

  32. Fernández I, Cossío FP, Sierra MA (2009) Chem Rev 109:6687

    Article  CAS  PubMed  Google Scholar 

  33. Fernández I, Bickelhaupt FM, Cossío FP (2014) Chem Eur J 20:10791

    Article  CAS  PubMed  Google Scholar 

  34. Fernández I, Bickelhaupt FM (2014) Chem Soc Rev 43:4953

    Article  PubMed  Google Scholar 

  35. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1

    Article  CAS  Google Scholar 

  36. Ziegler T, Rauk A (1979) Inorg Chem 18:1558

    Article  CAS  Google Scholar 

  37. Bickelhaupt FM, Ziegler T, von Rague Schleyer P (1995) Organometallics 14:2288

    Article  CAS  Google Scholar 

  38. Lendvay G (1989) J Phys Chem 93:4422

    Article  CAS  Google Scholar 

  39. Wiberg KB (1968) Tetrahedron 24:1083

    Article  CAS  Google Scholar 

  40. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison

  41. Moyano A, Periclas MA, Valenti E (1989) J Org Chem 54:573

    Article  CAS  Google Scholar 

  42. Rosas F, Dominguez RM, Tosta M, Mora JR, Marquez E, Cordova T, Chuchani G (2010) J Phys Org Chem 23:743

    Article  CAS  Google Scholar 

  43. Knippenberg S, Bohnwagner MV, Harbach PH, Dreuw A (2015) J Phys Chem A 119:1323

    Article  CAS  PubMed  Google Scholar 

  44. Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  PubMed  Google Scholar 

  45. Shiroudi A, Deleuze MS (2015) J Mol Model 21:301

    Article  CAS  PubMed  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford

    Google Scholar 

  47. Parr RG, Wang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  48. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  49. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  50. Chang R (2005) Physical chemistry for the biosciences. University Science Books, Sausalito

    Google Scholar 

  51. Moore JW, Pearson RG (1981) Kinetics and mechanism—the study of homogeneous chemical reactions. Wiley, New York

    Google Scholar 

  52. Carstensen HH, Dean AM, Deutschmann O (2007) Proc Combust Inst 31:149

    Article  CAS  Google Scholar 

  53. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  54. Johnson HS, Heicklen J (1962) J Phys Chem 66:532

    Article  Google Scholar 

  55. Forst W (1973) Theory of unimolecular reactions. Academic Press, New York

    Google Scholar 

  56. Beyer T, Swinehart DF (1973) Commun Assoc Comput Mach 16:379

    Google Scholar 

  57. Stein SE, Rabinovitch BS (1973) J Chem Phys 58:2438

    Article  CAS  Google Scholar 

  58. Canneaux S, Bohr F, Henon E (2014) J Comput Chem 35:82

    Article  CAS  PubMed  Google Scholar 

  59. Mourits FM, Rummens HA (1977) Can J Chem 55:3007

    Article  CAS  Google Scholar 

  60. Kee RJ, Rupley FM, Miller JA, Coltrin ME, Grcar JF, Meeks E, Moffat HK, Lutz AE, Dixon-Lewis G, Smooke MD, Warnatz J, Evans GH, Larson RS, Mitchell RE, Petzold LR, Reynolds WC, Caracotsios M, Stewart WE, Glarborg P, Wang C, McLellan CL, Adigun O, Houf WG, Chou CP, Miller SF, Ho P, Young PD, Young DJ, Hodgson DW, Petrova MV, Puduppakkam KV (2010) Chemkin, Reaction design. San Diego, California

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Shiroudi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliaey, A.R., Shiroudi, A., Zahedi, E. et al. Theoretical study on the elimination kinetics in the gas phase of allyl methyl compounds. Monatsh Chem 149, 1389–1400 (2018). https://doi.org/10.1007/s00706-018-2184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2184-0

Keywords

Navigation