β-Cyclodextrin–graphene oxide–diatomaceous earth material: preparation and its application for adsorption of organic dye

  • Yunlong Wu
  • Zerun Zhao
  • Mingliang Chen
  • Zefeng Jing
  • Fengxian Qiu
Original Paper
  • 10 Downloads

Abstract

In this work, a novel β-cyclodextrin–graphene oxide–diatomaceous earth material (β-CD-GO-DE) was prepared and its application as excellent adsorbent was carried out for adsorption of methylene blue in aqueous solution. The structure and morphology of β-CD-GO-DE material were evidenced using Fourier-transform-infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffractometer, and thermogravimetric analysis. The adsorption experiment for removal of methylene blue was investigated in detail. The highest adsorption efficiency can reach 98.5% at 0.02 g cm−3 dosage of β-CD-GO-DE, the temperature of 65 °C, and time of 3 h. Adsorption kinetics and adsorption isotherm were investigated. Pseudo-second-order kinetics model can describe the adsorption process appropriately. The adsorption isotherm data were simulated using Langmuir and Freundlich isotherm models and the results showed that the equilibrium data were fitted well with Langmuir isotherm model, the maximum adsorption capacity of methylene blue reached 110.50 mg g−1. The adsorbent has good regeneration performance. The proposed method shows that the β-CD-GO-DE could be applied to adsorb of methylene blue in wastewater with satisfactory result.

Graphical abstract

Keywords

Graphene oxide β-Cyclodextrin Diatomaceous earth Adsorption Methylene blue 

Notes

Acknowledgements

This project was supported by the National Natural Science Foundation of China (U1507115) and the Innovation Program for Graduate Education of Jiangsu Province (KYLX_1063).

References

  1. 1.
    Weng CH, Pan YF (2007) J Hazard Mater 144:355CrossRefGoogle Scholar
  2. 2.
    Al-Degs Y, Khraisheh MAM, Allen SJ, Ahmad MN (2000) Water Res 34:927CrossRefGoogle Scholar
  3. 3.
    Peng YG, Chen DJ, Ji JL, Kong Y, Wan HX, Yao C (2013) Appl Clay Sci 74:81CrossRefGoogle Scholar
  4. 4.
    Cottet L, Almeida CAP, Naidek N, Viante MF, Lopes MC, Debacher NA (2014) Appl Clay Sci 95:25CrossRefGoogle Scholar
  5. 5.
    Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M (2005) Chemosphere 58:1049CrossRefGoogle Scholar
  6. 6.
    Hong S, Wen C, He J, Gan FX, Ho YS (2009) J Hazard Mater 167:630CrossRefGoogle Scholar
  7. 7.
    Ozacar M, Sengil IA (2005) Bioresour Technol 96:791CrossRefGoogle Scholar
  8. 8.
    Wang SB, Boyjoo Y, Choueib A, Zhu ZH (2005) Water Res 39:129CrossRefGoogle Scholar
  9. 9.
    Zhao H, Qiu F, Yan J, Wang J, Li X, Yang D (2016) Appl Clay Sci 121–122:137CrossRefGoogle Scholar
  10. 10.
    Yan J, Zhu Y, Qiu F, Zhao H, Yang D, Wang J, Wen W (2016) Chem Eng Res Des 106:168CrossRefGoogle Scholar
  11. 11.
    Yan J, Li X, Qiu F, Zhao H, Yang D, Wang J, Wen W (2016) Mater Technol 31:406Google Scholar
  12. 12.
    Lee CG, Wei SD, Kysar JW, Hone J (2008) Science 321:385CrossRefGoogle Scholar
  13. 13.
    Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902CrossRefGoogle Scholar
  14. 14.
    Chen Y, Qi YY, Tai ZX, Yan XB, Zhu FL, Xue QJ (2012) Eur Polym J 48:1026CrossRefGoogle Scholar
  15. 15.
    Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) ACS Nano 5:4380CrossRefGoogle Scholar
  16. 16.
    He K, Qiu F, Qin J, Yan J, Yang D (2014) J Ind Eng Chem 20:1293CrossRefGoogle Scholar
  17. 17.
    Yuan J, Qiu F, Li P (2017) J Iran Chem Soc 14:1827CrossRefGoogle Scholar
  18. 18.
    Wang J, Qiu F, Wu H, Li X, Zhang T, Niu X, Yang D (2017) Spectrochim Acta A 179:163CrossRefGoogle Scholar
  19. 19.
    Guo YJ, Guo SJ, Ren JT, Zhai YM, Dong SJ, Wang EK (2010) ACS Nano 4:4001CrossRefGoogle Scholar
  20. 20.
    Sljivic M, Smiciklas I, Pejanovic S, Plecas I (2009) Appl Clay Sci 43:33CrossRefGoogle Scholar
  21. 21.
    Tsai WT, Hsien KJ, Chang YM, Lo CC (2005) Bioresource Technol 96:657CrossRefGoogle Scholar
  22. 22.
    Khraisheh MAM, Al-Degs YS, Mcminn WAM (2004) Chem Eng J 99:177CrossRefGoogle Scholar
  23. 23.
    Ho YS, McKay G (1999) Process Biochem 34:451CrossRefGoogle Scholar
  24. 24.
    Langmuir I (1916) J Am Chem Soc 38:2221CrossRefGoogle Scholar
  25. 25.
    Freundlich H (1928) Colloid and capillary chemistry. E.P. Dutton and Co., New YorkGoogle Scholar
  26. 26.
    Fytianos K, Voudrias E, Kokkalis E (2000) Chemosphere 40:3CrossRefGoogle Scholar
  27. 27.
    Wu DL, Zheng PW, Chang PR, Ma XF (2011) Chem Eng J 174:489CrossRefGoogle Scholar
  28. 28.
    Auta M, Hameed B (2012) Chem Eng J 198:219CrossRefGoogle Scholar
  29. 29.
    Zhang ZY, Kong JL (2011) J Hazard Mater 193:325CrossRefGoogle Scholar
  30. 30.
    Fan LL, Luo CN, Li XJ, Lu FG, Qiu HM, Sun M (2012) J Hazard Mater 215:272CrossRefGoogle Scholar
  31. 31.
    Bulut Y, Karaer H (2015) J Dispers Sci Technol 36:61CrossRefGoogle Scholar
  32. 32.
    Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations