Skip to main content

Advertisement

Log in

Kinetic and mechanistic insight into the formation of amphetamine using the Leuckart–Wallach reaction and interaction of the drug with GpC·CpG base-pair step of DNA: a DFT study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The Leuckart–Wallach reductive amination reaction in clandestine amphetamine synthesis is the most popular, simple, rapid, and safe non-metal reduction route, in which its mechanism is not known with certainty. The Minnesota 2006 exchange correlation functional M06-2X in conjugation with aug-cc-pVTZ basis set and SMD universal solvation model have been used to elucidate the kinetics and mechanism of the Leuckart–Wallach reaction for the formation of amphetamine via a five-step pathway mechanism in 1-butanol and benzene solvents. The unimolecular and bimolecular rate constants were calculated at the experimentally employed temperature 403.15 K using canonical transition state theory corrected by the quantum tunneling factors. The overall reaction is thermodynamically spontaneous and kinetically second order (first order in ammonium formate and first order in phenyl-2-propane) which is in agreement with experimental results. In the following, drug–DNA interaction in four different models has been studied in the water solvent using the mPW1B95/6–31G* level of theory. The mPW1B95/6–31G* energies were corrected for the basis set superposition error and the underestimation of London dispersion interactions by adding the gCP and D3(BJ) correction terms, respectively. According to the interaction energies, topological analysis of electron localization function and localized orbital locator, interaction of amphetamine with GpC·CpG base-pair step of DNA is non-covalent in nature. Non-covalent interaction index plots indicated that there are weak van der Waals and strong stabilizing hydrogen bond attractions between the drug and DNA. The presence of strong stabilizing hydrogen bond attractions is the responsible for the higher negative interaction energies in the interaction models including hydrogen bonds between amphetamine and DNA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Javors MA, King TS, Ginsburg BC, Gerak LR (2015) Addiction medicine: science and practice: neurobehavioral toxicology of substances of abuse, vol 1. Springer, New York

    Google Scholar 

  2. Adamec C (2011) Understanding drugs series: amphetamines and methamphetamine. Chelsea House, An Infobase Learning Company, New York

    Google Scholar 

  3. Moore EA (2011) The amphetamine debate: the use of adderall, ritalin and related drugs for behavior modification, neuroenhancement and anti-aging purposes. McFarland & Company Inc, North Carolina

    Google Scholar 

  4. Snow O (2008) Amphetamine syntheses: overview and reference guide for professionals. Thoth Press, USA

    Google Scholar 

  5. Greene SL, Kerr F, Braitberg G (2008) Emerg Med Austral 20:391

    Article  Google Scholar 

  6. Spiller HA, Hays HL, Aleguas A (2013) CNS Drugs 27:531

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen LA, He H, Pham-Huy C (2006) Int J Biomed Sci 2:85

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Edeleanu L (1887) Ber Deutsch Chem Ges 20:616

    Article  Google Scholar 

  9. Allen A, Cantrell TS (1989) Forensic Sci Int 42:183

    Article  CAS  Google Scholar 

  10. Wallis ES, Nagel SC (1931) J Am Chem Soc 53:2787

    Article  CAS  Google Scholar 

  11. Braun JV, Friehmelt E (1933) Ber Dtsch Chem Ges A/B 66:684

    Article  Google Scholar 

  12. Schrecker AW (1957) J Org Chem 22:33

    Article  CAS  Google Scholar 

  13. Shi XX, Yao JZ, Kang L, Shen CL, Yi F (2004) J Chem Res 2004:681

    Article  Google Scholar 

  14. Patrick TM, McBee ET, Hass HB (1946) J Am Chem Soc 68:1009

    Article  CAS  PubMed  Google Scholar 

  15. Guy M, Freeman S, Alder JF, Brandt SD (2008) Cent Eur J Chem 6:526

    CAS  Google Scholar 

  16. Collins M, Salouros H, Cawley AT, Robertson J, Heagney AC, Arenas-Queralt A (2010) Rapid Commun Mass Spectrom 24:1653

    Article  CAS  PubMed  Google Scholar 

  17. Ritter JJ, Kalish J (1948) J Am Chem Soc 70:4048

    Article  CAS  PubMed  Google Scholar 

  18. Jonson CSL, Strömberg L (1994) Forensic Sci Int 69:31

    Article  CAS  Google Scholar 

  19. Alexander ER, Wildman RB (1948) J Am Chem Soc 70:1187

    Article  CAS  PubMed  Google Scholar 

  20. Pollard CB, Young DC (1951) J Org Chem 16:661

    Article  CAS  Google Scholar 

  21. Webers VJ, Bruce WF (1948) J Am Chem Soc 70:1422

    Article  CAS  PubMed  Google Scholar 

  22. Crossley FS, Moore ML (1944) J Org Chem 9:529

    Article  CAS  Google Scholar 

  23. Lukasiewicz A (1963) Tetrahedron 19:1789

    Article  Google Scholar 

  24. Laue T, Plagens A (2006) Namen-und Schlagwort–Reaktionen der Organischen Chemie. Teubner Verlag, Wiesbaden

    Google Scholar 

  25. Mundy BP, Ellerd MG, Favaloro FG (2005) Name reactions and reagents in organic synthesis, 2nd edn. Wiley, New Jersey

    Book  Google Scholar 

  26. Tyagi R (2008) Organic reactions: mechanism with problems. Discovery Publishing Pvt. Ltd, New Delhi

    Google Scholar 

  27. Mutter ST, Platts JA (2011) J Phys Chem A 115:11293

    Article  CAS  PubMed  Google Scholar 

  28. Churchill CDM, Wetmore SD (2009) J Phys Chem B 113:16046

    Article  CAS  PubMed  Google Scholar 

  29. Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Arch Biochem Biophys 576:49

    Article  CAS  PubMed  Google Scholar 

  30. Young DC (1950) The mechanism of the Leuckart reaction. Ph. D Thesis, University of Florida

  31. Bennun A (2012) Int J Med Biol Front 18:767

    Google Scholar 

  32. Li X, Frisch MJ (2006) J Chem Theory Comput 2:835

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  34. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  PubMed  Google Scholar 

  35. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  37. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

    Article  CAS  PubMed  Google Scholar 

  38. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  PubMed  Google Scholar 

  39. Miguel ELM, Santos CIL, Silva CM, Pliego JR Jr (2016) J Braz Chem Soc 27:2055

    CAS  Google Scholar 

  40. Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. VCH Publishers, New York

    Google Scholar 

  41. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2872

    Article  CAS  PubMed  Google Scholar 

  42. Wigner E (1932) Z Phys Chem Abt B 19:203

    Google Scholar 

  43. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  44. Canneaux S, Bohr F, Henon E (2014) J Comput Chem 35:82

    Article  CAS  PubMed  Google Scholar 

  45. Brown RL (1981) J Res Natl Bur Stand 86:357

    Article  CAS  Google Scholar 

  46. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  47. Kruse H, Grimme S (2012) J Chem Phys 136:154101

    Article  CAS  PubMed  Google Scholar 

  48. Brandenburg JG, Alessio M, Civalleri B, Peintinger MF, Bredow T, Grimme S (2013) J Phys Chem A 117:9282

    Article  CAS  PubMed  Google Scholar 

  49. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  CAS  PubMed  Google Scholar 

  50. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456

    Article  CAS  PubMed  Google Scholar 

  51. gCP-D3 Webservice. http://wwwtc.thch.uni-bonn.de/. Accessed 12 July 2017

  52. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  53. Silvi B, Savin A (1994) Nature 371:683

    Article  CAS  Google Scholar 

  54. Schmider HL, Becke AD (2000) J Mol Struct (THEOCHEM) 527:51

    Article  CAS  Google Scholar 

  55. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  CAS  PubMed  Google Scholar 

  57. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Zahedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostovari, H., Zahedi, E., Sarvi, I. et al. Kinetic and mechanistic insight into the formation of amphetamine using the Leuckart–Wallach reaction and interaction of the drug with GpC·CpG base-pair step of DNA: a DFT study. Monatsh Chem 149, 1045–1057 (2018). https://doi.org/10.1007/s00706-018-2145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2145-7

Keywords

Navigation