Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 4, pp 749–754 | Cite as

Gold-catalyzed oxidative aminoesterification of unactivated alkenes

  • Pascal Feige
  • Teresa de Haro
  • Giulia Rusconi
  • Estibaliz Merino
  • Cristina Nevado
Original Paper
  • 276 Downloads

Abstract

This paper describes an efficient aminoesterification of unactivated alkenes through Au(I)/Au(III) redox catalytic cycles using Selectfluor or hypervalent iodine(III) reagents.

Graphical abstract

Keywords

Selectfluor Hypervalent iodine(III) reagents Heterocycles Homogeneous catalysis Redox reactions 

Notes

Acknowledgements

We thank the European Research Council (ERC Starting Grant 307948) and the Forschungskredit of the University of Zurich for the financial support.

References

  1. 1.
    Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483CrossRefGoogle Scholar
  2. 2.
    Li G, Chang HT, Sharpless KB (1996) Angew Chem Int Ed 35:451CrossRefGoogle Scholar
  3. 3.
    Muniz K (2004) Chem Soc Rev 33:166CrossRefGoogle Scholar
  4. 4.
    Donohoe TJ, Callens CKA, Thompson AL (2009) Org Lett 11:2305CrossRefGoogle Scholar
  5. 5.
    Cardona F, Goti A (2009) Nat Chem 1:269CrossRefGoogle Scholar
  6. 6.
    Bataille CJR, Donohoe TJ (2011) Chem Soc Rev 40:114CrossRefGoogle Scholar
  7. 7.
    Muñiz K (2011) Dihydroxylation, aminohydroxylation, diamination, and dibromination of carbon–carbon double bonds. In: De Vries JG (ed) Science of synthesis, stereoselective synthesis, vol 1: stereoselective reactions of carbon–carbon double bonds. Thieme, Germany, p 5Google Scholar
  8. 8.
    Karjalainen OK, Koskinen AMP (2012) Org Biomol Chem 10:4311CrossRefGoogle Scholar
  9. 9.
    Rawling MJ, Tomkinson NCO (2013) Org Biomol Chem 11:1434CrossRefGoogle Scholar
  10. 10.
    Chemler SR, Copeland DA (2013) Top Heterocycl Chem 32:39Google Scholar
  11. 11.
    Muñiz K (2014) Addition reactions with formation of carbon–heteroatom bonds: (III) asymmetric methods of dihydroxylation, aminohydroxylation, and diamination. In: Knochel P, Molander GA (eds) Comprehensive organic synthesis II, 2nd edn, vol 7: oxidation. Elsevier, Amsterdam, p 411CrossRefGoogle Scholar
  12. 12.
    Dauban P, Darses B, Jarvis A (2014) Addition reactions with formation of carbon–nitrogen bonds. In: Knochel P, Molander GA (eds) Comprehensive organic synthesis II, 2nd edn, vol 7: oxidation. Elsevier, Amsterdam, p 538CrossRefGoogle Scholar
  13. 13.
    Zhu Y, Cornwall RG, Du H, Zhao B, Shi Y (2014) Acc Chem Res 47:3665CrossRefGoogle Scholar
  14. 14.
    Heravi MM, Zadsirjan V, Esfandyari M, Lashaki TB (2017) Tetrahedron Asymmetry 28:987CrossRefGoogle Scholar
  15. 15.
    Alexanian EJ, Lee C, Sorensen EJ (2005) J Am Chem Soc 127:7690CrossRefGoogle Scholar
  16. 16.
    Streuff J, Hövelmann CH, Nieger M, Muñiz K (2005) J Am Chem Soc 127:14586CrossRefGoogle Scholar
  17. 17.
    Bar GLJ, Lloyd-Jones GC, Booker-Milburn KI (2005) J Am Chem Soc 127:7308CrossRefGoogle Scholar
  18. 18.
    Sibbald PA, Michael FE (2009) Org Lett 11:1147CrossRefGoogle Scholar
  19. 19.
    Liskin DV, Sibbald PA, Rosewall CF, Michael FE (2010) J Org Chem 75:6294CrossRefGoogle Scholar
  20. 20.
    Yin G, Mu X, Liu G (2016) Acc Chem Res 49:2413CrossRefGoogle Scholar
  21. 21.
    Liu G, Stahl SS (2006) J Am Chem Soc 128:7179CrossRefGoogle Scholar
  22. 22.
    Desai LV, Sanford MS (2007) Angew Chem Int Ed 46:5737CrossRefGoogle Scholar
  23. 23.
    Iglesias A, Perez EG, Muñiz K (2010) Angew Chem Int Ed 49:8109CrossRefGoogle Scholar
  24. 24.
    Muñiz K, Kirsch J, Chavez P (2011) Adv Synth Catal 353:689CrossRefGoogle Scholar
  25. 25.
    Martinez C, Wu Y, Weinstein AB, Stahl SS, Liu G, Muñiz K (2013) J Org Chem 78:6309CrossRefGoogle Scholar
  26. 26.
    Broggini G, Beccalli EM, Borelli T, Brusa F, Gazzola S, Mazza A (2015) Eur J Org Chem 2015:4261CrossRefGoogle Scholar
  27. 27.
    Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) Chem Rev 107:5318CrossRefGoogle Scholar
  28. 28.
    Whitfield SR, Sanford MS (2007) J Am Chem Soc 129:15142CrossRefGoogle Scholar
  29. 29.
    Muñiz K (2009) Angew Chem Int Ed 48:9412CrossRefGoogle Scholar
  30. 30.
    Lyons TW, Sanford MS (2010) Chem Rev 110:1147CrossRefGoogle Scholar
  31. 31.
    Furuya T, Benitez D, Tkatchouk E, Strom AE, Tang P, Goddard WA, Ritter T (2010) J Am Chem Soc 132:3793CrossRefGoogle Scholar
  32. 32.
    Racowski JM, Sanford MS (2011) Higher oxidation state organopalladium and platinum chemistry. In: Canty A (ed) Topics in organometallic chemistry, vol 35. Springer, Berlin, p 1Google Scholar
  33. 33.
    Wu T, Yin G, Liu G (2009) J Am Chem Soc 131:16354CrossRefGoogle Scholar
  34. 34.
    Fuller PH, Kim JW, Chemler SR (2008) J Am Chem Soc 130:17638CrossRefGoogle Scholar
  35. 35.
    Mancheno DE, Thornton AR, Stoll AH, Kong A, Blakey SB (2010) Org Lett 12:4110CrossRefGoogle Scholar
  36. 36.
    Sequeira FC, Turnpenny BW, Chemler SR (2010) Angew Chem Int Ed 49:6365CrossRefGoogle Scholar
  37. 37.
    Cornwall RG, Zhao B, Shi Y (2011) Org Lett 13:434CrossRefGoogle Scholar
  38. 38.
    Sanjaya S, Chiba S (2012) Org Lett 14:5342CrossRefGoogle Scholar
  39. 39.
    Karyakarte SD, Smith TP, Chemler SR (2012) J Org Chem 77:7755CrossRefGoogle Scholar
  40. 40.
    Shen K, Wang Q (2015) Chem Sci 6:4279CrossRefGoogle Scholar
  41. 41.
    Wdowik T, Chemler SR (2017) J Am Chem Soc 139:9515CrossRefGoogle Scholar
  42. 42.
    Xie J, Wang YW, Qi LW, Zhang B (2017) Org Lett 19:1148CrossRefGoogle Scholar
  43. 43.
    Khoder ZM, Wong CE, Chemler SR (2017) ACS Catal 7:4775CrossRefGoogle Scholar
  44. 44.
    Mahoney JM, Smith CR, Johnston JN (2005) J Am Chem Soc 127:1354CrossRefGoogle Scholar
  45. 45.
    Correa A, Tellitu I, Domínguez E, SanMartin R (2006) J Org Chem 71:8316CrossRefGoogle Scholar
  46. 46.
    Wardrop DJ, Bowen EG, Forslund RE, Sussman AD, Weerasekera SL (2010) J Am Chem Soc 132:1188CrossRefGoogle Scholar
  47. 47.
    Lovick HM, Michael FE (2010) J Am Chem Soc 132:1249CrossRefGoogle Scholar
  48. 48.
    Wegner HA, Ahles S, Neuburger M (2008) Chem Eur J 14:11310CrossRefGoogle Scholar
  49. 49.
    Iglesias A, Muñiz K (2009) Chem Eur J 15:10563CrossRefGoogle Scholar
  50. 50.
    Zhang G, Peng Y, Cui L, Zhang L (2009) Angew Chem Int Ed 48:3112CrossRefGoogle Scholar
  51. 51.
    Zhang G, Cui L, Wang Y, Zhang L (2010) J Am Chem Soc 132:1474CrossRefGoogle Scholar
  52. 52.
    Brenzovich WE, Benitez D, Lackner AD, Shunatona HP, Tkatchouk E, Goddard WA, Toste FD (2010) Angew Chem Int Ed 49:5519CrossRefGoogle Scholar
  53. 53.
    Hopkinson MN, Ross JE, Giuffredi GT, Gee AD, Gouverneur V (2010) Org Lett 12:4904CrossRefGoogle Scholar
  54. 54.
    Zhang R, Xu Q, Chen K, Gu P, Shi M (2013) Eur J Org Chem 2013:7366CrossRefGoogle Scholar
  55. 55.
    Wang Q, Jiang Y, Sun R, Tang XY, Shi M (2016) Chem Eur J 22:14739CrossRefGoogle Scholar
  56. 56.
    de Haro T, Nevado C (2010) J Am Chem Soc 132:1512CrossRefGoogle Scholar
  57. 57.
    de Haro T, Nevado C (2011) Angew Chem Int Ed 50:906CrossRefGoogle Scholar
  58. 58.
    de Haro T, Nevado C (2011) Chem Commun 47:248CrossRefGoogle Scholar
  59. 59.
    Zeng W, Chemler SR (2007) J Am Chem Soc 129:12948CrossRefGoogle Scholar
  60. 60.
    Stang PJ, Boehshar M, Wingert H, Kitamura T (1988) J Am Chem Soc 110:3272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Pascal Feige
    • 1
  • Teresa de Haro
    • 1
  • Giulia Rusconi
    • 1
  • Estibaliz Merino
    • 1
  • Cristina Nevado
    • 1
  1. 1.Institute of ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations