Skip to main content
Log in

Thermodynamic properties for Sm2(MoO4)3 determined by calorimetric measurement and re-evaluation of heat capacities for elemental molybdenum: standard entropy, Néel temperature, solubility product

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The thermodynamic properties for Sm2(MoO4)3 were investigated. Sm2(MoO4)3 is the one of the yellow phase-related substances. Yellow phases are known as hygroscopic harmful phases in the nuclear fuel glasses. The standard molar entropy, \(\Delta_{0}^{T} S_{\text{m}}^{^\circ }\), at 298.15 K of Sm2(MoO4)3 was determined by measuring its isobaric heat capacities, \(C_{{{p},{\text{m}}}}^{^\circ }\), from 2 K via the fitting functions including the Debye–Einstein formula and electronic as well as magnetic terms. The Néel temperature, TN, was estimated by extrapolating the magnetic term in the fitting function. Its standard Gibbs energy of formation, \(\Delta_{\text{f}} G_{\text{m}}^{^\circ }\), was determined by combining the obtained \(\Delta_{0}^{T} S_{\text{m}}^{^\circ }\) datum with the reference datum of the standard enthalpy of formation,\(\Delta_{\text{f}} H_{\text{m}}^{^\circ }\), where \(\Delta_{0}^{T} S_{\text{m}}^{^\circ }\) at 298.15 K of the elemental molybdenum as the standard state was re-evaluated by re-reviewing the literature. The unknown standard Gibbs energy of solution, \(\Delta_{\text{sln}} G_{\text{m}}^{^\circ }\), and the solubility product, Ks, at 298.15 K for Sm2(MoO4)3 were predicted on the basis of the data obtained in this study and the reference datum of  MoO42−(aq) and Sm3+(aq). The thermodynamic values determined in the present study are as follows:

$$\Delta_{0}^{T} S_{\text{m}}^{^\circ } \left( {{\text{Sm}}_{2} \left( {{\text{MoO}}_{4} } \right)_{3} \left( {\text{cr}} \right), \, 298.15 {\text{K}}} \right)/\left( {{\text{J K}}^{ - 1} {\text{mol}}^{ - 1} } \right) = 400.14 \pm 4.00,$$
$$\Delta_{\text{f}} G_{\text{m}}^{^\circ } \left( {{\text{Sm}}_{2} \left( {{\text{MoO}}_{4} } \right)_{3} \left( {\text{cr}} \right), \, 298.15 {\text{K}}} \right)/\left( {{\text{kJ}}\;{\text{mol}}^{ - 1} } \right) = - 4048.71 \pm 4.45,$$
$$\Delta_{\text{sln}} G_{\text{m}}^{^\circ } \left( {{\text{Sm}}_{ 2} \left( {{\text{MoO}}_{ 4} } \right)_{ 3} \left( {\text{cr}} \right),\; 2 9 8. 1 5 {\text{K}}} \right)/\left( {{\text{kJ}}\;\left( {{\text{mol of MoO}}_{ 4}^{ 2- } \left( {\text{aq}} \right)} \right)^{ - 1} } \right) = 6 8. 5 6\pm 1. 8 8 ,$$
$$K_{\text{s}} \left( {\frac{1}{3} {\text{Sm}}_{2} \left( {{\text{MoO}}_{4} } \right)_{3} \left( {\text{aq}} \right),\;298.15{\text{K}}} \right) = 9.75 \times 10^{ - 13} \pm 1.95 \times 10^{ - 13} ,$$
$$T_{\text{N}} /{\text{K}} = 1. 30 \pm 0. 30,$$
$$\Delta_{0}^{T} S_{\text{m}}^{^\circ } \left( {{\text{Mo}}\left( {\text{cr}} \right), \, 298.15\,{\text{K}}} \right)/\left( {{\text{JK}}^{ - 1} {\text{mol}}^{ - 1} } \right) = 28.573 \pm 0.086.$$

These data are expected to be useful for geo-chemical simulation of diffusion of radioactive elements through underground water.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawamoto Y, Clemens K, Tomozawa M (1981) J Am Ceram Soc 64:292

    Article  CAS  Google Scholar 

  2. Wakabayashi H, Fukumoto S, Yanaka H, Terai R (1987) Yogyo-Kyokai-Shi 95:486

    Article  CAS  Google Scholar 

  3. Hyatt NC, Short RJ, Hand RJ, Lee WE (2005) Ceram Trans 168:179

    CAS  Google Scholar 

  4. Magnin M (2009) Etude des processus de demixtion et de cristallisation au sein de liquids fondus bolosilicates riches en oxide de molybdene. These de doctrat de I’Universite Pierre et Marie (Paris VI), p 120

  5. Magnin M (2010) Rapport CEA-R-6237

  6. Mendoza C, Panczer G, Ligny D, Bardez-Giboire I, Peuget S (2010) Ceram Trans 217:43

    CAS  Google Scholar 

  7. Kitamura A, Kirishima A, Saito T, Shibutani S, Tochiyama O (2010) JAEA-Review 2010-010:1

    Google Scholar 

  8. Ragoussi ME, Brassinnes S (2015) Radiochim Acta 103:679

    Article  CAS  Google Scholar 

  9. Dash S, Shukla NK (2013) J Therm Anal Calorim 112:193

    Article  CAS  Google Scholar 

  10. Morishita M, Navrotsky A, Wilding M (2004) J Am Ceram Soc 87:1550

    Article  CAS  Google Scholar 

  11. Muldrow CN Jr, Hepler LG (1958) J Phys Chem 62:982

    Article  CAS  Google Scholar 

  12. Barany R (1962) Bur Mines Rep Invest No. 6143

  13. Weller WW, King EG (1962) Bur Mines Rep Invest No. 6147

  14. Saha R, Babu R, Nagarajan K, Mathews CK (1989) J Nuclear Mater 167:271

    Article  Google Scholar 

  15. Zhidikowa AP, Malinin SD (1972) Geokhimiya: 28

  16. Essington ME (1990) Environ Sci Technol 24:214

    Article  CAS  Google Scholar 

  17. Grambow B, Müller R, Rother A (1992) Radiochim Acta 58:71

    Google Scholar 

  18. Felmy AR, Rai D, Mason MJ (1992) J Solution Chem 21:525

    Article  CAS  Google Scholar 

  19. Gamsjäger H (2013) Pure Appl Chem 85:2059

    Article  Google Scholar 

  20. Morishita M, Kinoshita Y, Houshiyama H, Nozaki A, Yamamoto H (2017) J Chem Thermodyn 114:30

    Article  CAS  Google Scholar 

  21. Nesmeyanov AV, Savich IA, El’kind MF, Koryazhkin V (1956) Vestnik Moskov Univ 11 Ser Mat Mekh Astron Fiz Khim No. 1:221

  22. Shukla NK, Prasad R, Stood DD (1993) J Chem Thermodyn 25:429

    Article  CAS  Google Scholar 

  23. Morishita M, Houshiyama H (2015) Mater Trans 56:545

    Article  CAS  Google Scholar 

  24. Jost P (1972) Bull Soc Chim Fr 51:2993

    Google Scholar 

  25. O’Hare PAG (1974) J Chem Thermodyn 6:425

    Article  Google Scholar 

  26. Morishita M, Fukushima M, Houshiyama H (2016) Mater Trans 57:41

    Article  CAS  Google Scholar 

  27. Weller WW (1966) Bur Mines Rep Invest No. 6782

  28. Lyon WG, Westrum EF (1975) J Chem Thermodyn 7:741

    Article  CAS  Google Scholar 

  29. Koyama K, Morishita M, Harada T, Maekawa N (2003) Met Mater Trans 34B:653

    Article  CAS  Google Scholar 

  30. Morishita M, Navrotsky A (2003) J Am Ceram Soc 86:1927

    Article  CAS  Google Scholar 

  31. Pankajavalli R, Sreedharan OM (1990) J Nucl Mater 172:151154

    Article  Google Scholar 

  32. Samant MS, Bharadwaj AS, Dharwadkar SR (1993) J Nucl Mater 200:157

    Article  CAS  Google Scholar 

  33. Sin Z, Dash S, Prasad R, Venugopal V (1996) J Alloys Compd 244:85

    Article  Google Scholar 

  34. Britton HTS, German WL (1934) J Chem Soc: 1156

  35. McCay LW (1934) J Am Chem Soc 56:2548

    Article  CAS  Google Scholar 

  36. Ricci JE, Linke WF (1951) J Am Chem Soc 73:3601

    Article  CAS  Google Scholar 

  37. Pan K, Chin J (1954) Chem Soc-Taip Ser II: 16

  38. Muldrow CN Jr, Hepler LG (1956) J Am Chem Soc 78:5989

    Article  CAS  Google Scholar 

  39. Weiner R, Boriss P (1958) Fresenius J Anal Chem 160:343

    Article  CAS  Google Scholar 

  40. Grober SR, Suri SK (1980) J Inorg Nucl Chem 42:51

    Article  Google Scholar 

  41. Doğan M, Sönmezoğlu IC (1991) Turk J Chem 15:223

    Google Scholar 

  42. Doğan M, Sönmezoğlu IC (1992) Kim Kim Muhendisligi Semp 8th 3:39

  43. Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) J Phys Chem Ref Data 39:02301

    Article  CAS  Google Scholar 

  44. Morishita M, Houshiyama H, Kinoshita Y, Nozaki A, Yamamoto H (2017) Mater Trans 58:868

    Article  CAS  Google Scholar 

  45. Basu M, Mishra R, Kerkar ASB, Dharwadkar SR (1998) J Nucl Mater 257:185

    Article  CAS  Google Scholar 

  46. Dash S, Singh Z, Dahale ND (2000) J Alloys Compd 302:75

    Article  CAS  Google Scholar 

  47. Chattopadly G, Tripathi SN, Kerkar AS (1984) J Am Ceram Soc 67:610

    Article  Google Scholar 

  48. Tripathi SN, Chattopadly G, Kerkar AS (1985) J Am Ceram Soc 68:232

    Article  CAS  Google Scholar 

  49. Dash S, Jayanthi K, Singh Z, Dahale ND, Parida SC, Iyer VS (2000) J Alloys Compd 296:166

    Article  CAS  Google Scholar 

  50. Kinoshita Y, Morishita M, Nozaki A, Yamamoto H (2017) J Jpn Inst Met 81:485

    Article  Google Scholar 

  51. Moose JE, Parr SW (1924) J Am Chem Soc 46:2856

    Article  Google Scholar 

  52. Nueman B, Kroger C, Kunz H (1934) Z Anorg Allg Chem 218:379

    Article  Google Scholar 

  53. Staskiewicz AB, Tucker JR, Snyder PE (1955) J Am Ceram Soc 77:2987

    CAS  Google Scholar 

  54. Mah AD (1957) J Phys Chem 61:1572

    Article  CAS  Google Scholar 

  55. Seltz H, Dunkerley FJ, DeWitt BJ (1943) J Am Chem Soc 65:600

    Article  CAS  Google Scholar 

  56. Smith DF, Brown D, Samor DJ, Van Artsdalen ER (1956) J Am Chem Soc 78:1533

    Article  CAS  Google Scholar 

  57. Cosgrove LA, Snyder PE (1953) J Am Chem Soc 75:1227

    Article  CAS  Google Scholar 

  58. Ginnings DC, Corruccini RJ (1947) J Res Natl Bur Stand 38:583

    Article  CAS  Google Scholar 

  59. King EG, Weller WW, Christensen Jr AU (1960) Bur Mines Rep Invest No. 5664

  60. Graham RL, Hepler LG (1956) J Am Chem Soc 78:4846

    Article  CAS  Google Scholar 

  61. O’Hare PAG, Hoekstra HR (1973) J Chem Thermodyn 5:851

    Article  Google Scholar 

  62. O’Hare PAG, Hoekstra HR (1974) J Chem Thermodyn 6:117

    Article  Google Scholar 

  63. O’Hare PAG, Jensen KJ, Hoekstra HR (1974) J Chem Thermodyn 6:681

    Article  Google Scholar 

  64. Crouch-Baker S, Dickens PG (1973) J Chem Thermodyn 15:675

    Article  Google Scholar 

  65. Shukla NK, Prasad R, Roy KN, Sood DD (1992) J Chem Thermodyn 24:897

    Article  CAS  Google Scholar 

  66. Gamsjäger H, Morishita M (2015) Pure Appl Chem 87:461

    Article  CAS  Google Scholar 

  67. Gamsjäger E, Morishita M, Gamsjäger H (2016) Monatsh Chem 147:263

    Article  CAS  Google Scholar 

  68. Hwang JS, Lin KJ, Tien C (1997) Rev Sci Instrum 68:94

    Article  CAS  Google Scholar 

  69. Lashely JC, Hundley MF, Migliori A, Sarrao AJL, Pagliuso PG, Darling TW, Jaime M, Cooley JC, Hults WL, Morales L, Thomas DJ, Smith JL, Boerio-Goates J, Woodfield MF, Stewart GR, Fisher RA, Phillips NE (2003) Cryogenics 43:369

    Article  CAS  Google Scholar 

  70. Morishita M, Koyama K, Shikada S, Kusumoto M (2004) Metall Mater Trans B35:891

    Article  Google Scholar 

  71. Morishita M, Koyama K, Shikada S, Kusumoto M (2005) Z Metallk 96:32

    Article  CAS  Google Scholar 

  72. Morishita M, Koyama K, Shiraga T (2005) Microelect Eng 81:382

    Article  CAS  Google Scholar 

  73. Morishita M, Yamamoto H, Tsuboki K, Matsumoto Y (2006) Mater Trans 47:1555

    Article  CAS  Google Scholar 

  74. Morishita M, Yamamoto H, Onoue A, Matsumoto Y (2008) J Alloys Compd 458:41

    Article  CAS  Google Scholar 

  75. Morishita M, Yamamoto H, Shikada S, Kusumoto M, Matsumoto Y, Onoue A, Nishimura N, Ohtani H (2009) J Quant Chem 109:2695

    Article  CAS  Google Scholar 

  76. Morishita M, Yamamoto H, Shikada S, Kusumoto M, Matsumoto Y (2010) Mater Trans 51:1705

    Article  CAS  Google Scholar 

  77. Shi Q, Slow CL, Boerio-Goates J, Woodfileld BF (2010) J Chem Thermodyn 42:1107

    Article  CAS  Google Scholar 

  78. Morishita M, Yamamoto H, Kodera M, Ikeda K, Miura S, Yamada Y (2011) Thermochim Acta 526:90

    Article  CAS  Google Scholar 

  79. Morishita M, Ikeda K, Nishimura N, Miura S, Yamada Y (2012) J Phys Chem C 116:20489

    Article  CAS  Google Scholar 

  80. Shi Q, Park TJ, Schliessar J, Navrotsky A, Woodfield B (2014) J Chem Thermodyn 72:77

    Article  CAS  Google Scholar 

  81. Simon F, Zeidler W (1926) Z Phys Chem 123:383

    Google Scholar 

  82. Horowitz M, Daunt JG (1953) Phys Rev 91:1099

    Article  CAS  Google Scholar 

  83. Rayne J (1954) Phys Rev 95:1428

    Article  CAS  Google Scholar 

  84. Clusius K, Franzosini P (1959) Z Naturforschung 14a:99

    CAS  Google Scholar 

  85. Bryant CA, Keesom PH (1961) J Chem Phys 35:1149

    Article  Google Scholar 

  86. Morin FJ, Maita JP (1963) Phys Rev 129:11151120

    Article  Google Scholar 

  87. Rorer DC, Onn DG, Meyer H (1965) Phys Rev 6A:1661

    Article  Google Scholar 

  88. Khrioplovich LM, Paukov IE (1983) J Chem Thermodyn 15:333

    Article  Google Scholar 

  89. Cooper D, Langstroth GO (1929) Phys Rev 33:243

    Article  CAS  Google Scholar 

  90. Oetting FL, West ED (1982) J Chem Thermodyn 14:107

    Article  CAS  Google Scholar 

  91. Ditmars DA, Cezairliyan A, Ishihara S, Douglas TB (1977) Nat Bur Stand (US) Spec Publ 260-55

  92. Taylor RE, Finch RA (1961) N A Avation Inc, Canoga Park, CA, Report No. NAA-SR-6034

  93. Hassett SE (1969) LLL Report No. UCRL-50637

  94. Chekhovskoi VYA, Kalinchina RG (1975) Russ J Phys Chem 49:431

    Google Scholar 

  95. Heiniger F, Bucher E, Muller J (1966) J Phys Kondens Mater 5:243

    CAS  Google Scholar 

  96. Hultgren R, Desai PD, Hawkins DT, Gleisler M, Kelley KK, Wagman DD (1973) Selected values of the thermodynamic properties of the elements. American Society for Metals, Metals Park

    Google Scholar 

  97. Brewer L, Lamoreaux RH (1980) Part I: Thermochemical Properties. In: Brewer L (ed), Molybdenum: Physico-Chemical Properties of its Compounds and Alloys. Atomic Energy Review Special Issue No. 7. International Atomic Energy Agency, Vienna

  98. Chase MW, Davis CA Jr, Downey JR Jr, Frurip DJ, McDonald RA, Syverud AN (1985) JANAF Thermochemical Tables, 3rd edn. J Phys Chem Ref Data 14(Part 2):1509

  99. Chase MW Jr (ed) (1998) NIST-JANAF Thermochemical Tables, 4th edn. J Phys Chem Ref Data Monograph No. 9, Part 2, p 1578

  100. Guillermet AF (1985) Intern J Thermophysics 6:367

    Article  CAS  Google Scholar 

  101. Desai PD (1987) J Phys Chem Ref Data 16:91

    Article  CAS  Google Scholar 

  102. Barin I (1989) Thermochemical data of pure substances. VCH Verlag, Weinheim, p 917

    Google Scholar 

  103. Koeler WC, Moon RM (1972) Phys Rev 29:1468

    Google Scholar 

  104. Hartenbach IZ (2008) Anorg Allg Chem 634:2044

    Article  Google Scholar 

  105. Kittel C (1998) Introduction to solid state physics, 7th edn. Maruzen, Tokyo, Translated to Japanese), p 135

    Google Scholar 

  106. Barron THK, White GK (1999) Heat capacity and thermal expansion at low temperatures. Plenum Publishers, New York

    Book  Google Scholar 

  107. Coey JMD, Molnar VS, Torressen A (1989) J Less Common Met 151:191

    Article  CAS  Google Scholar 

  108. Fisher RA, Bouquet F, Phillips NE, Franck JP, Zhang GW, Gordon JE, Marcenat C (2001) Phys Rev B 64:134425

    Article  CAS  Google Scholar 

  109. Niira K (1960) Phys Rev 117:129

    Article  CAS  Google Scholar 

  110. Snow CL, Shi Q, Boerio-Goates J, Woodfield BF (2010) J Phys Chem C114:21100

    Google Scholar 

  111. Shi Q, Zhang L, Schlesinger ME, Boerio-Goates J, Woodfield BF (2013) J Chem Thermodyn 62:35

    Article  CAS  Google Scholar 

  112. Shi Q, Zhang L, Schlesinger ME, Boerio-Goates J, Woodfield BF (2013) J Chem Thermodyn 62:86

    Article  CAS  Google Scholar 

  113. Taylor JR (1982) An introduction to error analysis: the study of uncertainty in physical measurement. Oxford University Press, Oxford, p 57

    Google Scholar 

  114. Martin DL (1973) Phys Rev B 8:5357

    Article  CAS  Google Scholar 

  115. Stevens R, Boerio-Goates J (2004) J Chem Thermodyn 36:857

    Article  CAS  Google Scholar 

  116. Sabbah R, Xu-wu A, Chickos JS, Leitao MLP, Roux MV, Torres LA (1993) Thermochim Acta 331:93

    Article  Google Scholar 

  117. Gamsjäger H, Bugajski J, Gajda T, Lemire RJ, Preis W (2005) Chemical Thermodynamics of Nickel, Organization for Economic Co-operation and Development, Nuclear Energy Agency, Chemical Thermodynamics, vol 6. North Holland Elsevier Science Publisher BV, Amsterdam, p 43

    Google Scholar 

  118. Lemire RJ, Berner U, Musikas C, Palmer DA, Taylor P, Tochiyama O (2013) Chemical Thermodynamics of Iron Part 1, Organization for Economic Co-operation and Development, Nuclear Energy Agency, Chemical Thermodynamics, vol 13a. North Holland Elsevier Science Publisher B V, Amsterdam, p 53

    Google Scholar 

  119. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem Ref Data 11(Suppl. 2):234

    Google Scholar 

  120. Felmy AR, Rai D, Mason M, Fulton RW (1995) Radiochim Acta 69:177

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Professor Heinz Gamsjäger (Montanuniversität Leoben) for fruitful discussion. This research was funded in part by the Japan Society for the Promotion of Science (JSPS, Japan) under Grant-in-Aid for scientific research 26234567 and by Nuclear Energy Agency (NEA) Organization for Economic Co-operation and Development (OECD, International Organization) under grant Phase IV of the thermodynamic data base project for nuclear waste management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Morishita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morishita, M., Kinoshita, Y., Tanaka, H. et al. Thermodynamic properties for Sm2(MoO4)3 determined by calorimetric measurement and re-evaluation of heat capacities for elemental molybdenum: standard entropy, Néel temperature, solubility product. Monatsh Chem 149, 341–356 (2018). https://doi.org/10.1007/s00706-017-2128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2128-0

Keywords

Navigation