Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 4, pp 729–736 | Cite as

Peptide-catalyzed stereoselective Michael addition of aldehydes and ketones to heterocyclic nitroalkenes

  • Viera Poláčková
  • Patrícia Čmelová
  • Renáta Górová
  • Radovan ŠebestaEmail author
Original Paper
  • 249 Downloads

Abstract

Stereoselective Michael addition of enolizable carbonyl compounds to a furane-derived nitroalkene was catalyzed by di- and tripeptide organocatalysts. The most competent catalysts were tripeptides possessing Pro–Pro–Glu structure. With aldehydes, Michael adducts were obtained in high yields and with medium-to-high diastereo- (up to 13:1 d.r.) and enantiomeric purities (up to 99% ee). The reaction was less stereoselective with cyclic ketones than with aldehydes.

Graphical abstract

Keywords

Catalysis Peptides Michael addition Carbonyl compounds Heterocycles 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract no. APVV-15-0039.

References

  1. 1.
    Joule JA, Mills K (2010) Heterocyclic chemistry, 5th edn. Wiley-Blackwell, ChichesterGoogle Scholar
  2. 2.
    Corey EJ, Czakó B, Kürti L (2007) Molecules and medicine. Wiley, HobokenGoogle Scholar
  3. 3.
    Albrecht L, Ransborg LK, Jørgensen KA (2012) Catal Sci Technol 2:1089CrossRefGoogle Scholar
  4. 4.
    Vetica F, Chauhan P, Dochain S, Enders D (2017) Chem Soc Rev 46:1661CrossRefGoogle Scholar
  5. 5.
    Sethuraman I, Jose CM, Subbu P (2013) Curr Org Chem 17:2038CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Wang W (2012) Catal Sci Technol 2:42CrossRefGoogle Scholar
  7. 7.
    Vicario JL, Badia D, Carrillo L (2007) Synthesis 2007:2065Google Scholar
  8. 8.
    Tsogoeva SB (2007) Eur J Org Chem 2007:1701Google Scholar
  9. 9.
    Miller SJ (2004) Acc Chem Res 37:601CrossRefGoogle Scholar
  10. 10.
    Davie EAC, Mennen SM, Xu Y, Miller SJ (2007) Chem Rev 107:5759CrossRefGoogle Scholar
  11. 11.
    Wennemers H (2011) Chem Commun 47:12036CrossRefGoogle Scholar
  12. 12.
    Lewandowski B, Wennemers H (2014) Curr Opin Chem Biol 22:40CrossRefGoogle Scholar
  13. 13.
    Shugrue CR, Miller SJ (2017) Chem Rev 117:11894CrossRefGoogle Scholar
  14. 14.
    Miller SJ, Copeland GT, Papaioannou N, Horstmann TE, Ruel EM (1998) J Am Chem Soc 120:1629CrossRefGoogle Scholar
  15. 15.
    Jordan PA, Kayser-Bricker KJ, Miller SJ (2010) Proc Natl Acad Sci USA 107:20620CrossRefGoogle Scholar
  16. 16.
    Han S, Miller SJ (2013) J Am Chem Soc 135:12414CrossRefGoogle Scholar
  17. 17.
    Fiori KW, Puchlopek ALA, Miller SJ (2009) Nat Chem 1:630CrossRefGoogle Scholar
  18. 18.
    Krattiger P, Kovasy R, Revell JD, Ivan S, Wennemers H (2005) Org Lett 7:1101CrossRefGoogle Scholar
  19. 19.
    Córdova A, Zou W, Dziedzic P, Ibrahem I, Reyes E, Xu Y (2006) Chem Eur J 12:5383CrossRefGoogle Scholar
  20. 20.
    Dziedzic P, Zou W, Hafren J, Cordova A (2006) Org Biomol Chem 4:38CrossRefGoogle Scholar
  21. 21.
    Revell JD, Wennemers H (2008) Adv Synth Catal 350:1046CrossRefGoogle Scholar
  22. 22.
    Yan J, Wang L (2009) Chirality 21:413CrossRefGoogle Scholar
  23. 23.
    Bayat S, Tejo BA, Salleh AB, Abdmalek E, Normi YM, Rahman MBA (2013) Chirality 25:726CrossRefGoogle Scholar
  24. 24.
    Psarra A, Kokotos CG, Moutevelis-Minakakis P (2014) Tetrahedron 70:608CrossRefGoogle Scholar
  25. 25.
    Triandafillidi I, Bisticha A, Voutyritsa E, Galiatsatou G, Kokotos CG (2015) Tetrahedron 71:932CrossRefGoogle Scholar
  26. 26.
    Vega-Peñaloza A, Sánchez-Antonio O, Ávila-Ortiz CG, Escudero-Casao M, Juaristi E (2014) Asian J Org Chem 3:487CrossRefGoogle Scholar
  27. 27.
    Bisticha A, Triandafillidi I, Kokotos CG (2015) Tetrahedron Asymmetry 26:102CrossRefGoogle Scholar
  28. 28.
    Revell JD, Gantenbein D, Krattiger P, Wennemers H (2006) Biopolymers (Pept Sci) 84:105CrossRefGoogle Scholar
  29. 29.
    Xu Y, Zou W, Sundén H, Ibrahem I, Córdova A (2006) Adv Synth Catal 348:418CrossRefGoogle Scholar
  30. 30.
    Wiesner M, Revell JD, Wennemers H (2008) Angew Chem Int Ed 47:1871CrossRefGoogle Scholar
  31. 31.
    Wiesner M, Revell JD, Tonazzi S, Wennemers H (2008) J Am Chem Soc 130:5610CrossRefGoogle Scholar
  32. 32.
    Wiesner M, Wennemers H (2010) Synthesis 2010:1568Google Scholar
  33. 33.
    Duschmalé J, Wennemers H (2012) Chem Eur J 18:1111CrossRefGoogle Scholar
  34. 34.
    Bächle F, Duschmalé J, Ebner C, Pfaltz A, Wennemers H (2013) Angew Chem Int Ed 52:12619CrossRefGoogle Scholar
  35. 35.
    Duschmale J, Kohrt S, Wennemers H (2014) Chem Commun 50:8109CrossRefGoogle Scholar
  36. 36.
    Kastl R, Wennemers H (2013) Angew Chem Int Ed 52:7228CrossRefGoogle Scholar
  37. 37.
    Arakawa Y, Wiesner M, Wennemers H (2011) Adv Synth Catal 353:1201CrossRefGoogle Scholar
  38. 38.
    Arakawa Y, Wennemers H (2013) Chemsuschem 6:242CrossRefGoogle Scholar
  39. 39.
    Grünenfelder CE, Kisunzu JK, Wennemers H (2016) Angew Chem Int Ed 55:8571CrossRefGoogle Scholar
  40. 40.
    Akagawa K, Satou J, Kudo K (2016) J Org Chem 81:9396CrossRefGoogle Scholar
  41. 41.
    Akagawa K, Iwasaki Y, Kudo K (2016) Eur J Org Chem 2016:4460Google Scholar
  42. 42.
    Durini M, Sahr FA, Kuhn M, Civera M, Gennari C, Piarulli U (2011) Eur J Org Chem 2011:5599Google Scholar
  43. 43.
    Borges-González J, Feher-Voelger A, Crisóstomo FP, Morales EQ, Martín T (2017) Adv Synth Catal 359:576CrossRefGoogle Scholar
  44. 44.
    Cao D, Fang G, Zhang J, Wang H, Zheng C, Zhao G (2016) J Org Chem 81:9973CrossRefGoogle Scholar
  45. 45.
    Akagawa K, Kudo K (2017) Acc Chem Res 50:2429CrossRefGoogle Scholar
  46. 46.
    Metrano AJ, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ (2017) J Am Chem Soc 139:492CrossRefGoogle Scholar
  47. 47.
    Gao S, Tu YQ, Hu X, Wang S, Hua R, Jiang Y, Zhao Y, Fan X, Zhang S (2006) Org Lett 8:2373CrossRefGoogle Scholar
  48. 48.
    Pansare SV, Pandya K (2006) J Am Chem Soc 128:9624CrossRefGoogle Scholar
  49. 49.
    Benoiton NL (2006) Chemistry of peptide synthesis. Taylor & Francis, Boca RatonGoogle Scholar
  50. 50.
    Lu D, Gong Y, Wang W (2010) Adv Synth Catal 352:644CrossRefGoogle Scholar
  51. 51.
    Chen F, Huang S, Zhang H, Liu F, Peng Y (2008) Tetrahedron 64:9585CrossRefGoogle Scholar
  52. 52.
    Hernández JG, García-López V, Juaristi E (2012) Tetrahedron 68:92CrossRefGoogle Scholar
  53. 53.
    de Boer JW, Browne WR, Harutyunyan SR, Bini L, Tiemersma-Wegman TD, Alsters PL, Hage R, Feringa BL (2008) Chem Commun:3747Google Scholar
  54. 54.
    Tsunematsu H, Isobe R, Hanazono H, Soeda Y, Inagaki M, Ito N, Higuchi R, Yamamoto M (1999) Chem Pharm Bull 47:1040CrossRefGoogle Scholar
  55. 55.
    Hiroshi F, Hidenori K, Norio I, Ichizo M, Hideo O (1983) Bull Chem Soc Jpn 56:766CrossRefGoogle Scholar
  56. 56.
    Zhang A, Guo Y (2008) Chem Eur J 14:8939CrossRefGoogle Scholar
  57. 57.
    Yu H, Liu M, Han S (2014) Tetrahedron 70:8380CrossRefGoogle Scholar
  58. 58.
    Wang Y, Lin J, Wei K (2014) Tetrahedron Asymmetry 25:1599CrossRefGoogle Scholar
  59. 59.
    Zheng Z, Perkins BL, Ni B (2010) J Am Chem Soc 132:50CrossRefGoogle Scholar
  60. 60.
    Nugent TC, Bibi A, Sadiq A, Shoaib M, Umar MN, Tehrani FN (2012) Org Biomol Chem 10:9287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
  2. 2.Institute of Chemistry, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia

Personalised recommendations