Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 2, pp 381–394 | Cite as

Thermodynamic affinity in constrained free-energy systems

  • Pertti KoukkariEmail author
  • Risto Pajarre
  • Petteri Kangas
Original Paper


Affinity is the generic measure of the deviation of a state from stable equilibrium. Affinity, as introduced by de Donder, is a thermodynamic state property defined in terms of p, T, and system composition during the course of a chemical change. When incorporating reaction kinetic constraints to minimization of Gibbs energy of a multiphase system, affinity can be followed in terms of the extents of the constrained reactions. This property then becomes calculated in terms of the constraint potentials received as additional Lagrange multipliers in the minimization routine. Thus, received affinities are consistent with the respective values calculated from the chemical potentials of the reactants and products of the constrained reactions and their limiting behaviour corresponds to that defined for both stationary and stable equilibrium states. The intermediate affinities can be used in the respective reaction rate calculations, or as input parameters, to define the local chemical equilibrium set by known reaction kinetic constraints. Thus, they become a useful concept in modelling reactive processes.

Graphical abstract


Thermodynamics Computational chemistry Local thermodynamic equilibrium CFE 



This work was supported by the Strategic Research Council at the Academy of Finland, project Closeloop (Grant Number 303543).


  1. 1.
    Koukkari P, Pajarre R (2006) CALPHAD 30:18CrossRefGoogle Scholar
  2. 2.
    Koukkari P, Pajarre R (2011) Pure Appl Chem 83:1243Google Scholar
  3. 3.
    Kozeschnik E (2000) CALPHAD 24:245CrossRefGoogle Scholar
  4. 4.
    Pelton AD, Koukkari P, Pajarre R, Eriksson G (2014) J Chem Thermodyn 72:16CrossRefGoogle Scholar
  5. 5.
    Pajarre R, Koukkari P, Kangas P (2016) Chem Eng Sci 146:244CrossRefGoogle Scholar
  6. 6.
    Koukkari P (1993) Comput Chem Eng 17:1157CrossRefGoogle Scholar
  7. 7.
    Koukkari P, Laukkanen I, Liukkonen S (1997) Fluid Phase Equilib 136:345CrossRefGoogle Scholar
  8. 8.
    Keck JC, Gillespie D (1971) Combust Flame 17:237CrossRefGoogle Scholar
  9. 9.
    Keck JC (1990) Prog Energy Combust Sci 16:125CrossRefGoogle Scholar
  10. 10.
    Janbozorgi M, Ugarte S, Metghalchi H, Keck JC (2009) Combust Flame 156:1871CrossRefGoogle Scholar
  11. 11.
    Ren Z, Goldin GM, Hiremath V, Pope SB (2011) Combust Theory Model 15:827CrossRefGoogle Scholar
  12. 12.
    Elbahloul S, Rigopoulos S (2015) Combust Flame 162:2256CrossRefGoogle Scholar
  13. 13.
    De Donder T, Van Rysselberghe P (1936) Thermodynamic theory of affinity. Stanford University Press, StanfordGoogle Scholar
  14. 14.
    Hillert M (2007) Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. 15.
    Haase R (1990) Thermodynamics of irreversible processes. Dover, New YorkGoogle Scholar
  16. 16.
    Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, ChichesterGoogle Scholar
  17. 17.
    Kjelstrup S, Bedeaux D, Johannessen E, Gross J (2010) Non-equilibrium thermodynamics for engineers. World Scientific, SingaporeCrossRefGoogle Scholar
  18. 18.
    Ross J, Garcia-Colin LS (1989) J Phys Chem 93:2091CrossRefGoogle Scholar
  19. 19.
    Haase R (1981) Z Phys Chem 128:225CrossRefGoogle Scholar
  20. 20.
    Vuddagiri SR, Hall KR, Eubank PT (2000) Ind Eng Chem Res 39:508CrossRefGoogle Scholar
  21. 21.
    Lems S, van der Kooi H, de Swaan Arons J (2003) Chem Eng Sci 58:2001CrossRefGoogle Scholar
  22. 22.
    Qian H, Beard D (2005) Biophys Chem 114:213CrossRefGoogle Scholar
  23. 23.
    Bordel S, Nielsen J (2010) Metab Eng 12:369CrossRefGoogle Scholar
  24. 24.
    Niven RK (2010) Philos Trans R Soc B 365:1323CrossRefGoogle Scholar
  25. 25.
    Ross J, Corlan AD, Müller SC (2012) J Phys Chem B 116:7858CrossRefGoogle Scholar
  26. 26.
    Smith WR, Missen RW (1991) Chemical reaction equilibrium analysis: theory and algorithms. Krieger Publishing Company, MalabarGoogle Scholar
  27. 27.
    Koukkari P (1995) A physico-chemical reactor calculation by successive stationary states. Dissertation, Helsinki University of TechnologyGoogle Scholar
  28. 28.
    Koukkari P, Pajarre R, Blomberg PBA (2011) Pure Appl Chem 83:1063Google Scholar
  29. 29.
    Kangas P, Koukkari P, Brink A, Hupa M (2015) Chem Eng Technol 38:1173CrossRefGoogle Scholar
  30. 30.
    Kangas P, Vidal Vázquez F, Savolainen J, Pajarre R, Koukkari P (2017) Fuel 197:217CrossRefGoogle Scholar
  31. 31.
    Blomberg PBA, Koukkari P (2011) Comput Chem Eng 35:1238CrossRefGoogle Scholar
  32. 32.
    Cheluget EL, Missen RW, Smith WR (1987) J Phys Chem 91:2428CrossRefGoogle Scholar
  33. 33.
    Norval GW, Phillips MJ, Missen RW, Smith WR (1991) Can J Chem Eng 69:1184CrossRefGoogle Scholar
  34. 34.
    Koukkari P, Niemelä J (1997) Comput Chem Eng 21:245CrossRefGoogle Scholar
  35. 35.
    West RH, Celnik MS, Inderwildi OR, Kraft M, Beran G, Green W (2007) Ind Eng Chem Res 46:6147CrossRefGoogle Scholar
  36. 36.
    Koukkari P, Penttilä K, Keegel M (2000) Coupled thermodynamic and kinetic models for high-temperature processes. In: Proceedings of 10th International IUPAC Conference on High Temperature Materials Chemistry. Forscungszentrum Julich, p 253Google Scholar
  37. 37.
    Coda Zabetta E, Hupa M (2008) Combust Flame 152:14CrossRefGoogle Scholar
  38. 38.
    Zeldovich J (1946) Acta Physicochim URSS 12:577Google Scholar
  39. 39.
    Koukkari P (2010) ChemSheet model for the direct carbonation of lime milk in an integrated PCC process. In: Paperitehdaspäivät. Savonlinna, p P5Google Scholar
  40. 40.
    Meyer V, Pisch A, Penttilä K, Koukkari P (2016) Chem Eng Res Des 115:335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Pertti Koukkari
    • 1
    Email author
  • Risto Pajarre
    • 1
  • Petteri Kangas
    • 1
  1. 1.VTT Technical Research Centre of Finland LtdEspooFinland

Personalised recommendations