Immobilized phosphine–phosphite rhodium complexes: highly active and enantioselective catalysts for asymmetric hydrogenation under continuous flow conditions

Abstract

The asymmetric hydrogenation of benchmark substrates dimethyl itaconate and (Z)-α-acetamidocinnamic acid methyl ester with chiral pentane-2,4-diyl-based phosphine–phosphite Rh complexes immobilized on the support with heteropolyacid (phosphotungstic acid) as anchoring agent has been studied. The complexes have been supported on commercially available Al2O3 by the Augustine method. The novel heterogeneous catalysts were applied in a high-throughput flow reactor. The effect of the pressure, temperature, substrate concentration, and flow rate was thoroughly screened to optimize reaction conditions. The immobilized catalysts proved to be remarkably stable and could be used 6 h in the microfluidic-based reactor without a significant loss of activity and selectivity. Furthermore, under optimized conditions, the hydrogenation product could be obtained with high activity (TOF >2000 h−1) and enantioselectivity (up to 99% ee). As the first precedent, the potential of supported Rh(P-OP)-complexes under flow conditions has been presented.

Graphical abstract

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ding K, Uozumi Y (2008) Handbook of asymmetric heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  2. 2.

    De Vos DE, Vankelecom IFJ, Jacobs PA (2000) Chiral catalyst immobilization and recycling. Wiley-VCH, Weinheim

    Google Scholar 

  3. 3.

    Zhao D, Ding K (2013) ACS Catal 3:928

    CAS  Article  Google Scholar 

  4. 4.

    Song CE, Lee SG (2002) Chem Rev 102:3495

    CAS  Article  Google Scholar 

  5. 5.

    Zsigmond Á, Balatoni I, Bogar K, Notheisz F, Joó F (2004) J Catal 227:428

    CAS  Article  Google Scholar 

  6. 6.

    McMorn P, Hutchings GJ (2004) Chem Soc Rev 33:108

    CAS  Article  Google Scholar 

  7. 7.

    König M, Linhardt A, Brüggemann O, Teasdale I (2016) Monatsh Chem 147:1575

    Article  Google Scholar 

  8. 8.

    Augustine R, Tanielyan S, Anderson S, Yang H (1999) Chem Commun:1257

  9. 9.

    Stephenson P, Licence P, Ross SK, Poliakoff M (2004) Green Chem 6:521

    CAS  Article  Google Scholar 

  10. 10.

    Stephenson P, Kondor B, Licence P, Scovell K, Ross SK, Poliakoff M (2006) Adv Synth Catal 348:1605

    CAS  Article  Google Scholar 

  11. 11.

    Burk MJ (1991) J Am Chem Soc 113:8518

    CAS  Article  Google Scholar 

  12. 12.

    Al Herz MA, Tsoligkas AN, Simmons MJH, Wood J (2011) Appl Catal A 396:148

    CAS  Article  Google Scholar 

  13. 13.

    Duque R, Pogorzelec PJ, Cole-Hamilton DJ (2013) Angew Chem Int Ed 52:1

    Article  Google Scholar 

  14. 14.

    Sakai N, Mano S, Nozaki K, Takaya H (1993) J Am Chem Soc 115:7033

    CAS  Article  Google Scholar 

  15. 15.

    Nozaki K, Takaya K, Hiyama T (1997) Top Catal 4:175

    Article  Google Scholar 

  16. 16.

    Falk A, Gödertz A-L, Schmalz HG (2013) Angew Chem Int Ed 52:1576

    CAS  Article  Google Scholar 

  17. 17.

    Falk A, Cavalieri A, Nichol GS, Vogt D, Schmalz H-G (2015) Adv Synth Catal 357:3317

    CAS  Article  Google Scholar 

  18. 18.

    Arribas I, Rubio M, Kleman P, Pizzano A (2013) J Org Chem 78:3997

    CAS  Article  Google Scholar 

  19. 19.

    Dindaroğlu M, Akyol S, Şimşir H, Neudörfl J-M, Burke A, Schmalz H-G (2013) Tetrahedron Asymmetry 24:657

    Article  Google Scholar 

  20. 20.

    Gavrilov KN, Zheglov SV, Shiryaev AA, Potapova OV, Gavrilov VK, Volov AN, Zamilatskov IA (2013) Russ Chem Bull 62:1097

    CAS  Article  Google Scholar 

  21. 21.

    Vaquero M, Vargas S, Suárez A, García-Garrido SE, Álvarez E, Mancera M, Pizzano A (2012) Organometallics 31:3551

    CAS  Article  Google Scholar 

  22. 22.

    Fernández-Pérez H, Benet-Buchholz J, Vidal-Ferran A (2013) Org Lett 15:3634

    Article  Google Scholar 

  23. 23.

    Núñez-Rico J-L, Vidal-Ferran A (2013) Org Lett 15:2066

    Article  Google Scholar 

  24. 24.

    Lao JR, Benet-Buchholz J, Vidal-Ferran A (2014) Organometallics 33:2960

    CAS  Article  Google Scholar 

  25. 25.

    Núñez-Rico JL, Etayo P, Fernández-Pérez H, Vidal-Ferran A (2012) Adv Synth Catal 354:3025

    Article  Google Scholar 

  26. 26.

    Farkas G, Balogh S, Madarász J, Szöllősy Á, Darvas F, Ürge L, Gouygou M, Bakos J (2012) Dalton Trans 41:9493

    CAS  Article  Google Scholar 

  27. 27.

    Farkas G, Császár Z, Balogh S, Szöllősy Á, Gouygou M, Bakos J (2013) Catal Commun 36:94

    CAS  Article  Google Scholar 

  28. 28.

    Fernández-Pérez H, Etayo P, Panossian P, Vidal-Ferran A (2011) Chem Rev 111:2119

    Article  Google Scholar 

  29. 29.

    Pizzano A (2016) Chem Rec 16:2599

    Article  Google Scholar 

  30. 30.

    Heutz FJL, Kamer PCJ (2016) Dalton Trans 45:2116

    CAS  Article  Google Scholar 

  31. 31.

    Kleman P, Barbaro P, Pizzano A (2015) Green Chem 17:3826

    CAS  Article  Google Scholar 

  32. 32.

    Farkas G, Balogh S, Szöllősy Á, Ürge L, Darvas F, Bakos J (2011) Tetrahedron Asymmetry 22:2104

    CAS  Article  Google Scholar 

  33. 33.

    Madarász J, Farkas G, Balogh S, Szöllősy Á, Kovács J, Darvas F, Ürge L, Bakos J (2011) J Flow Chem 2:62

    Article  Google Scholar 

  34. 34.

    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    CAS  Article  Google Scholar 

  35. 35.

    Barrett P, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank ThalesNano Nanotechnology Inc. for the H-Cube™ microreactor and Mr. Béla Édes for skilful assistance in analytical measurements and synthetic experiments. The research was supported by the ‘National Excellence Program’ in the framework of the project TÁMOP-4.2.4.A/2-11/1-2012-0001, by the National Research, Development and Innovation Office (NKFIH, K 115539) and by the project GINOP-2.3.2-15-2016-00053.

Author information

Affiliations

Authors

Corresponding author

Correspondence to József Bakos.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madarász, J., Nánási, B., Kovács, J. et al. Immobilized phosphine–phosphite rhodium complexes: highly active and enantioselective catalysts for asymmetric hydrogenation under continuous flow conditions. Monatsh Chem 149, 19–25 (2018). https://doi.org/10.1007/s00706-017-2048-z

Download citation

Keywords

  • Asymmetric catalysis
  • Heterogeneous catalysis
  • Flow reactor
  • Phosphorus compounds
  • Ligands
  • Immobilized complexes