Skip to main content
Log in

Investigation of conventional and non-conventional hydrogen bonds: a comparison of fluorine-substituted and non-fluorine substituted compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Two fluorine and bromine Boc protected phenoxypropanamine compounds were investigated to determine how hydrogen bonds affect the dynamic behaviour of an organic molecule. Using single crystal X-ray diffraction, the presence of a folded backbone for the fluorine-containing compound was established. In addition, the presence of an inter-molecular (conventional and non-conventional) hydrogen bond was detected by XRD. To investigate the conformational preference and available interactions in solution, variable temperature NMR at two different concentrations, 2D NMR at low temperature and quantum mechanics studies were performed. These investigations confirmed that the observed interactions in the solid phase were maintained in solution. However, competition between inter- and intra non-conventional hydrogen bond (originating from fluorine atoms) was detected at high temperature in dilute solution. Our studies suggest that fluorine assisted inter-molecular cross-coupling at room temperature. This study possibly introduces a new tool for manipulation of peptide and protein structures towards desired biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Albericio F, Kruger HG (2012) Future Med Chem 4:1527

    Article  CAS  Google Scholar 

  2. Pattabiraman VR, Bode JW (2011) Nature 480:471

    Article  CAS  Google Scholar 

  3. Johansson A, Kollman P, Rothenberg S, McKelvey J (1974) J Am Chem Soc 96:3794

    Article  CAS  Google Scholar 

  4. Kollman PA, Allen LC (1972) Chem Rev 72:283

    Article  CAS  Google Scholar 

  5. Desiraju GR (1996) Acc Chem Res 29:441

    Article  CAS  Google Scholar 

  6. Laursen JS, Engel-Andreasen J, Fristrup P, Harris P, Olsen CA (2013) J Am Chem Soc 135:2835

    Article  CAS  Google Scholar 

  7. Ward MD, Raithby PR (2013) Chem Soc Rev 42:1619

    Article  CAS  Google Scholar 

  8. Steiner T (2002) Angew Chem Int Ed 41:49

    Google Scholar 

  9. Emenike BU, Carroll WR, Roberts JD (2013) J Org Chem 78:2005

    Article  CAS  Google Scholar 

  10. Nagy PI (2013) J Phys Chem A 117:2812

    Article  CAS  Google Scholar 

  11. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  12. Fuller RO, Griffith CS, Koutsantonis GA, Lapere KM, Skelton BW, Spackman MA, White AH, Wild DA (2012) CrystEngComm 14:804

    Article  CAS  Google Scholar 

  13. Hunter CA (2004) Angew Chem Int Ed 43:5310

    Article  CAS  Google Scholar 

  14. Mati IK, Cockroft SL (2010) Chem Soc Rev 39:4195

    Article  CAS  Google Scholar 

  15. Scharf DH, Chankhamjon P, Scherlach K, Heinekamp T, Willing K, Brakhage AA, Hertweck C (2013) Angew Chem Int Ed 52:11092

    Article  CAS  Google Scholar 

  16. Yang L, Adam C, Nichol GS, Cockroft SL (2013) Nat Chem 5:1006

    Article  CAS  Google Scholar 

  17. Chiarucci M, Ciogli A, Mancinelli M, Ranieri S, Mazzanti A (2014) Angew Chem Int Ed 53:5405

    Article  CAS  Google Scholar 

  18. Parthasarathi R, Subramanian V (2006) Characterization of hydrogen bonding: from van der Waals interactions to covalency. In: Grabowski SJ (ed) Hydrogen bonding—new insights. Springer, Dordrecht

    Google Scholar 

  19. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  20. Kohli R (2016) Hydrogen bonding ability of hydroxamic acid and its isosteres with water and amino acid side chain groups, 1st edn. Anchor Academic Publishing, Germany

    Google Scholar 

  21. Taylor R (2016) Cryst Growth Des 16:4165

    Article  CAS  Google Scholar 

  22. Alkorta I, Elguero J (1998) Chem Soc Rev 27:163

    Article  CAS  Google Scholar 

  23. Jones CR, Qureshi MKN, Truscott FR, Hsu S-TD, Morrison AJ, Smith MD (2008) Angew Chem Int Ed 47:7099

    Article  CAS  Google Scholar 

  24. Kovács A, Varga Z (2006) Coord Chem Rev 250:710

    Article  Google Scholar 

  25. Preimesberger MR, Majumdar A, Aksel T, Sforza K, Lectka T, Barrick D, Lecomte JTJ (2015) J Am Chem Soc 137:1008

    Article  CAS  Google Scholar 

  26. Desiraju GR (2011) Angew Chem Int Ed 50:52

    Article  CAS  Google Scholar 

  27. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637

    CAS  Google Scholar 

  28. Perrin CL, Burke KD (2014) J Am Chem Soc 136:4355

    Article  CAS  Google Scholar 

  29. Lakshmipriya A, Suryaprakash N (2016) J Phys Chem A 120:7810

    Article  CAS  Google Scholar 

  30. Lakshmipriya A, Chaudhari SR, Shahi A, Arunan E, Suryaprakash N (2015) Phys Chem Chem Phys 17:7528

    Article  CAS  Google Scholar 

  31. Mishra SK, Suryaprakash N (2015) RSC Adv 5:86013

    Article  CAS  Google Scholar 

  32. Alapour S, Ramjugernath D, Koorbanally NA (2015) RSC Adv 5:83576

    Article  CAS  Google Scholar 

  33. Desiraju GR, Steiner T (2001) The weak hydrogen bond: in structural chemistry and biology, 1st edn. Oxford University Press, New York

    Book  Google Scholar 

  34. Bellisent-Funel MC, Dore JC (2013) Hydrogen bond networks, 1st edn. Springer, Netherlands

    Google Scholar 

  35. Farahani MD, Honarparvar B, Albericio F, Maguire GEM, Govender T, Arvidsson PI, Kruger HG (2014) Org Biomol Chem 12:4479

    Article  CAS  Google Scholar 

  36. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  37. Abraham R, Mobli M (2008) Modelling 1H NMR spectra of organic compounds: theory, applications and NMR prediction software, 1st edn. Wiley, London

    Book  Google Scholar 

  38. Chaudhari SR, Mogurampelly S, Suryaprakash N (2013) J Phys Chem B 117:1123

    Article  CAS  Google Scholar 

  39. Bower JF, Szeto P, Gallagher T (2007) Org Lett 9:3283

    Article  CAS  Google Scholar 

  40. Chen W, Twum EB, Li L, Wright BD, Rinaldi PL, Pang Y (2012) J Org Chem 77:285

    Article  CAS  Google Scholar 

  41. Clayden J, Greeves N, Warren S (2012) Organic chemistry, 2nd edn. OUP, Oxford

    Google Scholar 

  42. Aihara J-I (1999) J Phys Chem A 103:7487

    Article  CAS  Google Scholar 

  43. Alves CN, Carneiro AS, Andrés J, Domingo LR (2006) Tetrahedron 62:5502

    Article  CAS  Google Scholar 

  44. Borges RS, Vale JKL, Pereira GAN, Veiga AAS, Junior JB, da Silva ABF (2016) Med Chem Res 25:852

    Article  CAS  Google Scholar 

  45. Borges RS, Barros TG, Veiga AAS, Carneiro AS, Barros CAL, da Silva ABF (2015) Med Chem Res 24:3453

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford

    Google Scholar 

  47. Mennucci B (2012) Wiley Interdiscip Rev Comput Mol Sci 2:386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Research Foundation (NRF) South Africa and the South African Research Chairs Initiative of the Department of Science and Technology. We thank Mr. Dilip Jagjivan for his assistance with NMR experiments. JRAS and CAN thank CAPES and CNPq Brazilian Agencies and CHPC (http://www.chpc.ac.za) for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Koorbanally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alapour, S., Farahani, M.D., Silva, J.R.A. et al. Investigation of conventional and non-conventional hydrogen bonds: a comparison of fluorine-substituted and non-fluorine substituted compounds. Monatsh Chem 148, 2061–2068 (2017). https://doi.org/10.1007/s00706-017-2044-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2044-3

Keywords

Navigation