Monatshefte für Chemie - Chemical Monthly

, Volume 148, Issue 7, pp 1311–1321 | Cite as

Co-production of hydrogen and carbon nanotube-silica fiber composites from ethanol steam reforming over an Ni-silica fiber catalyst

  • Natthawan Prasongthum
  • Chaiyan Chaiya
  • Chanatip Samart
  • Guoqing Guan
  • Paweesuda Natewong
  • Prasert Reubroycharoen
Original Paper

Abstract

Nickel supported on silica fiber (Ni-SF) catalysts was successfully synthesized by sol–gel-assisted electrospinning of SFs followed by the conventional impregnation of the Ni salt and calcining. Their activity for the co-production of hydrogen (H2) and carbon nanotube-silica fiber (CNT-SF) composites in the ethanol steam reforming (ESR) process was investigated. The effects of the ESR reaction temperature, steam-to-carbon ratio (S/C), space–time (W/F), and Ni loading level on the reaction activity as well as H2 production and CNT-SF characteristics of the Ni-SF catalyst were investigated. The Ni-SF catalyst was highly effective at the simultaneous production of H2 and CNT. The optimized condition of the ESR in terms of the ethanol conversion and H2 yield was achieved at 600 °C, an S/C ratio of 9, and W/F of 18 gcat h mol−1 with a maximum H2 yield of 55%, while the best quality and quantity of the CNT (36%) formed along with a H2 yield of 29% was obtained at an Ni loading of 30 wt%, S/C ratio of 1, and W/F of 9 gcat h mol−1. The novel CNT-SF composite obtained from ESR exhibited a relatively high surface area and easy accessibility, making it a promising catalyst support for various processes.

Graphical abstract

Keywords

Nickel-based catalyst Steam reforming of ethanol Silica fiber Carbon nanotubes 

References

  1. 1.
    Ni M, Leung DYC, Leung MKH (2007) Int J Hydrogen Energy 32:3238CrossRefGoogle Scholar
  2. 2.
    Abreu AJD, Lucrédio AF, Assaf EM (2012) Fuel Process Technol 102:140CrossRefGoogle Scholar
  3. 3.
    Contreras JL, Salmones J, Colın-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Int J Hydrogen 39:18835Google Scholar
  4. 4.
    Trane R, Dahl S, Skjøth-Rasmussen MS, Jensen AD (2012) Int J Hydrogen 37:6447CrossRefGoogle Scholar
  5. 5.
    Vicente J, Ereña J, Montero C, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Int J Hydrogen 39:18820CrossRefGoogle Scholar
  6. 6.
    Popov VN (2004) Mater Sci Eng, R 43:61CrossRefGoogle Scholar
  7. 7.
    Paradise M, Goswami T (2007) Mater Des 28:1477CrossRefGoogle Scholar
  8. 8.
    Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) J Ind Eng Chem 20:1186CrossRefGoogle Scholar
  9. 9.
    Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Appl Catal B 176:532CrossRefGoogle Scholar
  10. 10.
    Lindo M, Vizcaíno AJ, Calles JA, Carrero A (2010) Int J Hydrogen 35:5895CrossRefGoogle Scholar
  11. 11.
    Reubroycharoen P, Tangkanaporn N, Chaiya C (2010) Stud Sur Sci Catal 175:689CrossRefGoogle Scholar
  12. 12.
    Sun C, Guo Y, Xu X, Du Q, Duan H, Chen Y, Li H, Liu H (2017) Compos A 92:33CrossRefGoogle Scholar
  13. 13.
    Chernyak SA, Suslova EV, Egorov AV, Lu L, Savilov SV, Lunin VV (2015) Fuel Process Technol 140:267CrossRefGoogle Scholar
  14. 14.
    Klaigaew K, Samart C, Chaiya C, Yoneyama Y, Tsubaki N, Reubroycharoen P (2015) Chem Eng J 278:166CrossRefGoogle Scholar
  15. 15.
    Jo SW, Kwak BS, Kim KM, Do JY, Park NK, Lee TJ, Lee ST, Kang M (2016) Chem Eng J 288:858CrossRefGoogle Scholar
  16. 16.
    Gil AG, Wu Z, Chadwick D, Li K (2015) Appl Catal A 506:188CrossRefGoogle Scholar
  17. 17.
    Li Z, Hu X, Zhang L, Liu S, Lu G (2012) Appl Catal A 417:281CrossRefGoogle Scholar
  18. 18.
    Xie H, Yu Q, Wei M, Duan W, Yao X, Qin Q, Zuo Z (2015) Int J Hydrogen 40:1420CrossRefGoogle Scholar
  19. 19.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094CrossRefGoogle Scholar
  20. 20.
    Bej B, Pradhan NC, Neogi S (2014) Catal Today 237:80CrossRefGoogle Scholar
  21. 21.
    Compagnoni M, Tripodi A, Rossetti I (2017) Appl Catal B 203:899CrossRefGoogle Scholar
  22. 22.
    Pinilla JL, Utrilla R, Karn RK, Suelves I, La´zaro MJ, Moliner R, Garcı´a AB, Rouzaud JN (2011) Int J Hydrogen 36:7832Google Scholar
  23. 23.
    Wang G, Wang H, Li W, Ren Z, Bai J, Bai J (2011) Fuel Process Technol 92:531CrossRefGoogle Scholar
  24. 24.
    Palacio R, Gallego J, Gabelica Z, Batiot-Dupeyrat C, Barrault J, Valange S (2015) Appl Catal B 504:642CrossRefGoogle Scholar
  25. 25.
    Wang H, Liu Y, Wang L, Qin YN (2008) Chem Eng J 145:25CrossRefGoogle Scholar
  26. 26.
    Hou P, Liu C, Cheng HM (2008) Carbon 46:2003CrossRefGoogle Scholar
  27. 27.
    Li F, Wang Y, Wang D, Wei F (2004) Carbon 42:2375CrossRefGoogle Scholar
  28. 28.
    Ratanathavorn W, Samart C, Reubroycharoen P (2015) Mater Lett 159:135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Natthawan Prasongthum
    • 1
  • Chaiyan Chaiya
    • 2
  • Chanatip Samart
    • 3
  • Guoqing Guan
    • 4
  • Paweesuda Natewong
    • 5
    • 6
  • Prasert Reubroycharoen
    • 5
    • 6
  1. 1.Program in Petrochemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Chemical Engineering Division, Faculty of EngineeringRajamangala University of Technology KrungthepBangkokThailand
  3. 3.Department of Chemistry, Faculty of Science and TechnologyThammasat UniversityPathumthaniThailand
  4. 4.North Japan Research Institute of Sustainable EnergyHirosaki UniversityAomoriJapan
  5. 5.Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University Research BuildingBangkokThailand
  6. 6.Department of Chemical Technology, Faculty of Science, and Center of Excellence in Catalysis for Bioenergy and Renewable ChemicalsChulalongkorn UniversityBangkokThailand

Personalised recommendations