Skip to main content
Log in

Spectroscopic and molecular modeling studies on the interactions of some benzofuran derivatives with BSA

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, the interactions of a series of benzofuran derivatives with bovine serum albumin (BSA) were investigated using UV–Vis and fluorescence spectroscopy and molecular modeling. The intrinsic fluorescence of BSA was found to be quenched by the benzofuran derivatives. The binding constants between the benzofuran derivatives and BSA calculated from fluorescence quenching were found to be (1.80 ± 0.04) × 104, (1.88 ± 0.06) × 104, and (2.02 ± 0.07) × 104 dm3 mol−1, respectively. According to the fluorescence resonance energy transfer, the average binding distances between the benzofuran derivatives and BSA were calculated to be 3.22, 3.29, and 3.02 nm, respectively. The binding of the benzofuran derivatives and BSA was modeled by molecular docking and molecular dynamic (MD) simulation methods. Principal component analysis was performed on 2001 snapshots of the MD trajectories at the equilibrium state. Based on the different regions in the PC space, about 15 conformations were selected, and the average of these was used to determine the interactions between the benzofuran derivatives and BSA. The results revealed that the benzofuran derivatives preferred the binding pocket of domain II of BSA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Santana L, Teijeira M, Uriarte E, Teran C, Linares B, Villar R, Laguna R, Cano E (1998) Eur J Pharm Sci 7:161

    Article  Google Scholar 

  2. Ujjinamatada RK, Appala RS, Agasimundin YS (2006) J Heterocycl Chem 43:437

    Article  CAS  Google Scholar 

  3. Kamal M, Shakya AK, Jawaid T (2011) Int J Med Pharm Sci 1:1

    Google Scholar 

  4. Gundogdu-Karaburun N, Benkli K, Tunali Y, Ucucu U, Demirayak S (2006) Eur J Med Chem 41:651

    Article  Google Scholar 

  5. Rida SM, El-Hawash SAM, Fahmy HTY, Haaza AA, El-Meligy MMM (2006) Arch Pharmacal Res 29:826

    Article  CAS  Google Scholar 

  6. Hranjec M, Sovi I, Ratkaj I, Pavlovi G, Ilic N, Valjalo L, Pavelic K, Pavelic SK, Karminski-Zamola G (2013) Eur J Med Chem 59:111

    Article  CAS  Google Scholar 

  7. Sathyadevi P, Krishnamoorthy P, Alagesan M, Thanigaimani K, Muthiah PT, Dharmaraj N (2012) Polyhedron 31:294

    Article  CAS  Google Scholar 

  8. Faridbod F, Ganjali MR, Larijani B, Riahi S, Saboury AA, Hosseini M, Norouzi P, Pillip C (2011) Spectrochim Acta Part A 78:96

    Article  Google Scholar 

  9. Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA (2002) J Biol Chem 277:35035

    Article  CAS  Google Scholar 

  10. Ojha B, Das G (2010) J Phys Chem B 114:3979

    Article  CAS  Google Scholar 

  11. He XM, Carter DC (1992) Nature 358:209

    Article  CAS  Google Scholar 

  12. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science, New York

    Book  Google Scholar 

  13. Peters T (1985) Adv Protein Chem 37:161

    Article  CAS  Google Scholar 

  14. Nematollahi D, Rafiee M (2004) J Electroanal Chem 566:31

    Article  CAS  Google Scholar 

  15. Li XW, Li XJ, Li YT, Wu ZY, Yan CW (2013) J Photochem Photobiol B 118:22

    Article  Google Scholar 

  16. Meti MD, Chimatadar SA, Nandibewoor ST (2014) Monatsh Chem 145:1519

    Article  CAS  Google Scholar 

  17. Bordbar M, Shamsipur M, Alizadeh N (2006) J Photochem Photobiol A Chem 178:83

    Article  CAS  Google Scholar 

  18. Lakowicz JR, Weber G (1973) Biochemistry 12:4161

    Article  CAS  Google Scholar 

  19. Bi S, Ding L, Tian Y, Song D, Zhou X, Liu X, Zhang H (2004) J Mol Struct 703:37

    Article  CAS  Google Scholar 

  20. Chakraborty B, Basu S (2009) J Lumin 129:34

    Article  CAS  Google Scholar 

  21. Ge YS, Jin C, Song Z, Zhang GQ, Jiang FL, Liu Y (2014) Spectrochim Acta Mol Biomol Spectrosc 124:265

    Article  CAS  Google Scholar 

  22. Jannesari Z, Hadadzadeh H, Khayamian T, Maleki B, Rudbari HA (2013) Eur J Med Chem 69:577

    Article  CAS  Google Scholar 

  23. He W, Li Y, Xue C, Hu Z, Chen X, Sheng F (2005) Bioorg Med Chem 13:1837

    Article  CAS  Google Scholar 

  24. Aghaee E, Ghasemi GB, Manouchehri F, Balalaie S (2014) J Mol Model 20:2446

    Article  Google Scholar 

  25. Gharaghani S, Khayamian T, Ebrahimi M (2013) SAR QSAR Environ Res 24:773

    Article  CAS  Google Scholar 

  26. Chodera JD (2016) J Chem Theory Comput 12:1799

    Article  CAS  Google Scholar 

  27. Fani N, Bordbar AK, Ghayeb Y (2013) Spectrochim Acta Part A 103:11

    Article  CAS  Google Scholar 

  28. Franciscato DS, Souza VR (2016) Monatsh Chem 147:1315

    Article  CAS  Google Scholar 

  29. Spoel DVD, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HGC (2005) J Comput Chem 26:1701

    Article  Google Scholar 

  30. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639

    Article  CAS  Google Scholar 

  31. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  32. Essmann U, Perera L, Berkowitz ML, Darden T, Pedersen LG (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  33. Schuttelkopf AW, Van Aalten DMF (2004) Acta Crystallogr D 60:1355

    Article  Google Scholar 

  34. Van der Spoel D, Berendsen H (1997) Biophys J 72:2032

    Article  Google Scholar 

  35. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) J Chem Theory Comput 4:435

    Article  CAS  Google Scholar 

  36. Berendsen HGC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  37. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) J Comput Chem 18:1463

    Article  CAS  Google Scholar 

  38. Wallace AC, Laskowski RA, Thornton JM (1995) Protein Eng 8:127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their thanks to the Research Council of Isfahan University of Technology and the Center of Excellence on Chemistry at Isfahan University of Technology. Sheikh Bahaei National High Performance Computing of Isfahan University of Technology also deserves our gratitude for performing the parallel simulation on RAKHSH cluster. We thank Reza Maleki for revising the manuscript. We are grateful to Dr. Anthea Downs for editing the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, B., Khayamian, T., Ghasemi, J.B. et al. Spectroscopic and molecular modeling studies on the interactions of some benzofuran derivatives with BSA. Monatsh Chem 148, 1887–1896 (2017). https://doi.org/10.1007/s00706-017-1975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1975-z

Keywords

Navigation