Skip to main content

Comparison of the solution and vacuum-processed quinacridones in homojunction photovoltaics


In this work, we explored industrially relevant pigments quinacridones as organic semiconductors with respect to their applicability in air-stable homojunction (single material-single layer) organic photovoltaic cells. We studied quinacridone and two linear transquinacridones, i.e., Pigment Red 122 (2,9′-dimethylquinacridone) and Pigment Red 202 (2,9′-dichloroquinacridone) in vacuum-processible OPV films and compared their performance to OPV films made from their solution-processed counterparts. We show that this class of materials generates photocurrent without the need of creating a donor–acceptor junction. Stable homojunctions were created both via vacuum-processible and solution-processible routes, with the latter method based on the chemical functionalization of the respective molecules with the thermolabile group, t-BOC, that affords solubility in various organic solvents and conversion back to the parent molecule via exposure to temperatures around 170 °C for periods not exceeding 30 min. We show that power conversion efficiencies around 0.15% are reachable without scrupulous optimization of the homojunction cells in terms of electrode surface functionalization or film deposition conditions. This class of materials holds promise for the further development of a new generation of air-stable organic photovoltaic cells based on simple fabrication technologies.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Chansin G, Ghaffarzadeh K, Zervos H (2016) OLED display forecasts 2016–2026: the rise of plastic and flexible displays, May 2016;

  2. Facchetti A (2011) Chem Mater 23:733

    Article  CAS  Google Scholar 

  3. Pron A, Rannou P (2002) Prog Polym Sci 27:135

    Article  CAS  Google Scholar 

  4. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ho-Baillie AWY (2017) Prog Photovolt Res Appl 25:3

    Article  Google Scholar 

  5. Kearns D, Calvin M (1958) J Chem Phys 29:950

    Article  CAS  Google Scholar 

  6. Ghosh AK, Morel DL, Feng T, Shaw RF, Rowe CA (1974) J Appl Phys 45:230

    Article  CAS  Google Scholar 

  7. Ghosh AK, Feng T (1978) J Appl Phys 49:5982

    Article  CAS  Google Scholar 

  8. Weinberger BR, Akhtar M, Gau S (1982) Synth Met 4:187

    Article  CAS  Google Scholar 

  9. Glenis S, Tourillon G, Garnier F (1986) Thin Solid Films 139:221

    Article  CAS  Google Scholar 

  10. Karg S, Weiss W, Dyakonov V, Schwoerer M (1993) Synth Met 54:427

    Article  CAS  Google Scholar 

  11. Chen TL, Chen JJ-A, Catane L, Ma B (2011) Org Electron 12:1126

  12. Chen JJ-A, Chen TL, Kim BS, Poulsen DA, Mynar JL, Fréchet JMJ, Ma B (2010) ACS Appl Mater Interfaces 2:2679

  13. Javed I, Zhang Z, Peng T, Zhou T, Zhang H, Khan MI, Liu Y, Wang Y (2011) Sol Energ Mat Sol Cells 95:2670

    Article  CAS  Google Scholar 

  14. Pho TV, Kim H, Seo JH, Heeger AJ, Wudl F (2011) Adv Funct Mater 21:4338

    Article  CAS  Google Scholar 

  15. Wang C, Zhang Z, Wang Y (2016) J Mater Chem C 4:9918

    Article  CAS  Google Scholar 

  16. Mizuguchi J, Senju T (2006) J Phys Chem B 110:19154

    Article  CAS  Google Scholar 

  17. Kalinowski J, Stampor W, Di Marco P, Fattori V (1994) Chem Phys 182:341

    Article  CAS  Google Scholar 

  18. Rossi L, Bongiovanni G, Borghesi A, Lanzani G, Kalinowski J, Mura A, Tubino R (1997) Synth Met 84:873

    Article  CAS  Google Scholar 

  19. Głowacki ED, Leonat L, Irimia-Vladu M, Schwödiauer R, Ullah M, Sitter H, Bauer S, Sariciftci NS (2012) App Phys Lett 101:023305

    Article  Google Scholar 

  20. Seeger K (1997) Semiconductor Physics. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  21. Głowacki ED, Leonat L, Voss G, Bodea M, Bozkurt Z, Irimia-Vladu M, Bauer S, Sariciftci NS (2011), Proceedings SPIE-Organic Semiconductors in Sensors and Bioelectronics IV, 8118:81180M1–81180M10

  22. Głowacki ED, Irimia-Vladu M, Kaltenbrunner M, Gasiorowski J, White MS, Monkowius U, Romanazzi G, Suranna GP, Mastrorilli P, Sekitani T, Bauer S, Someya T, Torsi L, Sariciftci NS (2013) Adv Mater 25:1563

    Article  Google Scholar 

  23. Yanagisawa H, Mizuguchi J, Aramaki S, Sakai Y (2008) Jpn J Appl Phys 47:4728

    Article  CAS  Google Scholar 

  24. Zambounis JS, Hao Z, Iqbal A (1997) Nature 388:131

    Article  CAS  Google Scholar 

  25. Głowacki ED, Voss G, Demirak K, Havlicek M, Sünger N, Okur AC, Monkowius U, Gąsiorowski J, Leonat L, Sariciftci NS (2013) Chem Commun 49:6063

    Article  Google Scholar 

  26. Sytnyk M, Głowacki ED, Yakunin S, Voss G, Schoefberger W, Kriegner D, Stangl J, Trotta R, Gollner C, Tollabimazraehno S, Romanazzi G, Bozkurt Z, Havlicek M, Sariciftci NS, Heiss W (2014) J Am Chem Soc 136:16522

    Article  CAS  Google Scholar 

  27. Labana SS, Labana LL (1967) Chem Rev 67:1

    Article  CAS  Google Scholar 

  28. Paulus EF, Leusen FJJ Schmidt MU (2007) CrystEngComm 9:131

  29. Senju T, Sakai M, Mizuguchi J (2007) Dyes Pigm 75:449

    Article  CAS  Google Scholar 

  30. Grehn L, Ragnarsson U (1984) Angew Chem 96:291

    Article  CAS  Google Scholar 

Download references


The work has been financially supported by FFG Austria, within the program: Energy Mission Austria, e!MISSION, Project No. 841194, “High Efficiency Homojunction Organic Photovoltaics (HomoOPV)”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mihai Irimia-Vladu.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunst, S., Karner, E., Coppola, M.E. et al. Comparison of the solution and vacuum-processed quinacridones in homojunction photovoltaics. Monatsh Chem 148, 863–870 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: