Skip to main content

Advertisement

Log in

Chemical vapor treatment of zinc oxide photoelectrodes for efficiency enhancement of dye-sensitized solar cells

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

ZnO photoelectrodes were successfully treated using hydrochloric vapor. The vapor was generated from hydrochloric acid solution with sonication assistance. The morphology showed a formation of plate-like structures after the vapor treatment, resulting in light scattering which was observed in terms of increased reflectance compared with the non-treated photoelectrodes. A dye-sensitized solar cell fabricated with the treated photoelectrodes exhibited an enhanced power conversion efficiency of 3.00% in comparison to the non-treated photoelectrodes base of 2.35%. The enhanced power conversion efficiency was observed in direct relation to the increased short-circuit current density. The increased short-circuit current density is due to the achieved light scattering in the photoelectrodes. Moreover, an extended open-circuit voltage was observed due to reduced electron recombination in the device. Therefore, a chemical vapor treatment of ZnO photoelectrodes via hydrochloric acid resulted in a successful scattering layer formation and a reduced recombination process for power conversion efficiency enhancement of ZnO dye-sensitized solar cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang H, Wang B, Yu J, Hu Y, Xia C, Zhang J, Liu R (2015) Sci Rep 5:9305

    Article  CAS  Google Scholar 

  2. Xue X, Tian J, Liao W, Shan Z (2014) Electrochim Acta 123:463

    Article  CAS  Google Scholar 

  3. Sutthana S, Wongratanaphisan D, Gardchareon A, Phadungdhitidhada S, Ruankham P, Choopun S (2016) Surf Coat Tech 306:30

    Article  CAS  Google Scholar 

  4. Deepak TG, Anjusree GS, Thomas S, Arun TA, Nair SV, Sreekumaran Nair A (2014) RSC Adv 4:7615

    Google Scholar 

  5. Que M, Que W, Yin X, Shao J (2016) Mater Res Bull 83:19

    Article  CAS  Google Scholar 

  6. Musavi Gharavi PS, Mohammadi MR (2015) Sol Energy Mater Sol Cells 137:113

    Article  CAS  Google Scholar 

  7. Arachchi NDH, Peiris GS, Shimomura M, Jayaweera PM (2016) Hydrometallurgy 166:73

    Article  CAS  Google Scholar 

  8. Wan K, Wu F, Dou Y, Fang L, Mao C (2016) J Alloy Compd 680:373

    Article  CAS  Google Scholar 

  9. Chu L, Qin Z, Liu W, Ma XG (2016) Appl Surf Sci 389:802

    Article  CAS  Google Scholar 

  10. Zhao P, Yao S, Wang M, Wang B, Sun P, Liu F, Liang X, Sun Y, Lu G (2015) Electrochim Acta 170:276

    Article  CAS  Google Scholar 

  11. Peng JD, Shih PC, Lin HH, Tseng CM, Vittal R, Suryanarayanan V, Ho KC (2014) Nano Energy 10:212

    Article  CAS  Google Scholar 

  12. Wu MT, Chow TJ (2014) Microporous Mesoporous Mater 196:354

    Article  CAS  Google Scholar 

  13. Fei C, Tian J, Wang Y, Liu X, Lv L, Zhao Z, Cao G (2014) Nano Energy 10:353

    Article  CAS  Google Scholar 

  14. Yang S, Kim H, Ahn SH, Lee CS (2015) Electrochim Acta 166:117

    Article  CAS  Google Scholar 

  15. Towannang M, Pimanpang S, Thiangkaew A, Rutphonsan P, Maiaugree W, Harnchana V, Jarernboon W, Amornkitbamrung V (2012) Synth Met 162:1954

    Article  CAS  Google Scholar 

  16. Hua Y, Chang S, He J, Zhang C, Zhao J, Chen T, Wong WY, Wong WK, Zhu X (2014) Chem Eur J 6300

  17. Park KH, Mondal S, Ghosh S, Das S, Bhaumik A (2016) Microporous Mesoporous Mater 225:255

    Article  CAS  Google Scholar 

  18. Choi J, Kang G, Park T (2015) Chem Mater 27:1359

    Article  CAS  Google Scholar 

  19. Vibha S, Aswal DK (2015) Semicond Sci Technol 30:064005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutthipoj Sutthana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moungsrijun, S., Sujinnapram, S., Choopun, S. et al. Chemical vapor treatment of zinc oxide photoelectrodes for efficiency enhancement of dye-sensitized solar cells. Monatsh Chem 148, 1191–1196 (2017). https://doi.org/10.1007/s00706-017-1952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1952-6

Keywords

Navigation