Skip to main content

Advertisement

Log in

A prediction approach for anti-HIV activity of HEPT compounds using random forest technique

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type 1 (HIV-1) is one of the deadliest viruses that affect public health worldwide. Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization estimate that there are more than 15 million people infected with this HIV-1 around the world. The cure of HIV-1 and a better understanding of effective drugs are urgently needed. In this work, we study the structure–activity relationship and predict the potency of HIV-1 drug compounds. We employ the random forest technique to select relevant molecular descriptors of 132 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT) compounds toward the inhibition of HIV-1 reverse transcriptase (RT). The best model yields 5 relevant descriptors with a coefficient of determination (R 2) of 0.83. Our prediction model suggests that a potent HEPT compound must be a lipophilic molecule with a high value of fractional hydrophobic van der Waals surface areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Global AIDS update 2016. (2016) UNAIDS. http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf. Accessed 20 Feb 2017

  2. De Clercq E (1998) Antivir Res 38:153

    Article  Google Scholar 

  3. De Clercq E (2004) Chem Biodivers 1:44

    Article  Google Scholar 

  4. Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, Retroviruses

    Google Scholar 

  5. Shafer RW, Dupnik K, Winters MA, Eshleman SH (2001) A guide to HIV-1 reverse transcriptase and protease sequencing for drug resistance studies. Compendium, HIV Sequence, p 1

    Google Scholar 

  6. Sarafianos S, Marchand B, Das K, Himmel D, Parniak MA, Hughes SH, Arnold E (2009) J Mol Biol 385:693

    Article  CAS  Google Scholar 

  7. Götte M, Rausch JW, Marchand B, Sarafianos S, Le Grice SF (2010) Biochim Biophys Acta 1804:1202

    Article  Google Scholar 

  8. Hu WS, Hughes SH (2012) Cold Spring Harbor Perspect Med 2:a006882

    Article  Google Scholar 

  9. Tanaka H, Baba M, Hayakawa H, Sakamaki T, Miyasaka T, Ubasawa M, Takashima H, Sekiya K, Nitta I, Shigeta S, Walker RT, Balzarini J, De Clercq E (1991) J Med Chem 34:349

    Article  CAS  Google Scholar 

  10. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T (1992) J Med Chem 35:337

    Article  CAS  Google Scholar 

  11. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Nitta I, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T (1992) J Med Chem 35:4713

    Article  CAS  Google Scholar 

  12. Tanaka H, Takashima H, Ubasawa M, Sekiya K, Inouye N, Baba M, Shigeta S, Walker RT, De Clercq E, Miyasaka T (1995) J Med Chem 38:2860

    Article  CAS  Google Scholar 

  13. Kireev DB, Chretien JR, Grierson DS, Monneret C (1997) J Med Chem 40:4257

    Article  CAS  Google Scholar 

  14. Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C (1999) Chem Rev 99:3525

    Article  CAS  Google Scholar 

  15. Gayen S, Debnath B, Samanta S, Jha T (2004) Bioorg Med Chem 12:1493

    Article  CAS  Google Scholar 

  16. Luco JM, Ferretti FH (1997) J Chem Inf Comput Sci 37:392

    Article  CAS  Google Scholar 

  17. Bazoui H, Zahouily M, Boulajaaj S, Sebti S, Zakarya D (2002) SAR QSAR Environ Res 13:567

    Article  CAS  Google Scholar 

  18. Darnag R, Schmitzer A, Belmiloud Y, Villemin D, Jarid A, Chait A, Seyagh M, Cherqaoui D (2009) QSAR Comb Sci 28:709

    Article  CAS  Google Scholar 

  19. Douali L, Villemin D, Cherqaoui D (2003) J Chem Inf Comp Sci 43:1200

    Article  CAS  Google Scholar 

  20. Prakasvudhisarn C, Lawtrakul L (2008) Monatsh Chem 139:197

    Article  CAS  Google Scholar 

  21. Shaik B, Zafar T, Agrawal VK (2013) Int J Med Chem Article ID 795621

  22. Breiman L (2001) Mach Learn 45:5

    Article  Google Scholar 

  23. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP (2003) J Chem Inf Comput Sci 43:1947

    Article  CAS  Google Scholar 

  24. Baba H, Takahara J, Mamitsuka H (2015) Pharm Res 32:2360

    Article  CAS  Google Scholar 

  25. Molecular Operating Environment (MOE) (2016), vol 2013.08. Chem Computing Group Inc

  26. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) J Mach Learn Res 12:2825

    Google Scholar 

  27. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D (1995) Nat Struct Biol 2:293

    Article  CAS  Google Scholar 

  28. Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Adv Neural Inf Processing Syst 26:431

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by Thammasat University Research Fund under the TU Research Scholar, Contract No. TP 2/21/2559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luckhana Lawtrakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inthajak, K., Khamsemanan, N., Nattee, C. et al. A prediction approach for anti-HIV activity of HEPT compounds using random forest technique. Monatsh Chem 148, 1697–1709 (2017). https://doi.org/10.1007/s00706-017-1945-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1945-5

Keywords

Navigation