Skip to main content
Log in

Electrochemical self-assembly of CuSCN-DAST hybrid thin films

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Nanostructured inorganic–organic hybrid thin films of copper(I) thiocyanate (CuSCN) and 4-(N,N-dimethylamino)-4′-(N′-methyl)stilbazolium tosylate (DAST) were electrochemically self-assembled by adding DAST into methanolic bath containing Cu2+ and SCN ions. Loading of the stilbazolium organic chromophore (DAS+) increased linearly on increasing DAST concentration, accompanied with changes of the film morphology, crystallographic orientation of CuSCN and transition from β- to α-CuSCN. At low DAST concentrations, transport limited passive occlusion of DAS+ has been suggested with its diffusion coefficient of 1.25 × 10−6 cm2 s−1 in methanol at 298 K, while the loading receives kinetic limitation by the surface chemical reaction to yield definitive hybrid structures, resulting in unique “hair comb” shape β-CuSCN-DAST and “nano-platelets” shape α-CuSCN-DAST hybrid structures. Both the inorganic and organic components are interconnected and bi-continuous, as the loaded DAS+ could be totally extracted by dimethylacetamide to leave porous skeleton of crystalline CuSCN, making them highly interesting for device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Okada S, Matsuda H, Nakanishi H, Kato M, Muramatsu R (1986) Organic nonlinear optical materials. Japan Patent JP 63048265, Feb 29, 1988 [Chem Abstr 109:219268 (1988)]

  2. Marder SR, Perry JW, Schaefer WP (1989) Science 245:626

    Article  CAS  Google Scholar 

  3. Yang Z, Mutter L, Stillhart M, Ruiz B, Aravazhi S, Jazbinsek M, Schneider A, Gramlich V, Günter P (2007) Adv Func Mater 17:2018

    Article  CAS  Google Scholar 

  4. Zhang X-C, Ma X-F, Jin Y, Lu T-M, Boden EP, Phelps PD, Stewart KR, Yakymyshyn CP (1992) Appl Phys Lett 61:3080

    Article  CAS  Google Scholar 

  5. Kawase K, Mizuno M, Sohma S, Takahashi H, Taniuchi T, Urata Y, Wada S, Tashiro H, Ito H (1999) Opt Lett 24:1065

    Article  CAS  Google Scholar 

  6. Taniuchi T, Okada S, Nakanishi H (2004) J Appl Phys 95:5984

    Article  CAS  Google Scholar 

  7. Vicario C, Jazbinsek M, Ovchinnikov AV, Chefonov OV, Ashitkov SI, Agranat MB, Hauri CP (2015) Opt Express 23:4573

    Article  CAS  Google Scholar 

  8. Pan F, Knöpfle G, Bosshard C, Follonier S, Spreiter R, Wong MS, Günter P (1996) Appl Phys Lett 69:13

    Article  CAS  Google Scholar 

  9. Sohma S, Takahashi H, Taniuchi T, Ito H (1999) Chem Phys 245:359

    Article  CAS  Google Scholar 

  10. Thakur M, Xu JJ, Bhowmik A, Zhou LG (1999) Appl Phys Lett 74:635

    Article  CAS  Google Scholar 

  11. Geis W, Sinta R, Mowers W, Deneault SJ, Marchant MF, Krohn KE, Spector SJ, Calawa DR, Lyszczarz TM (2004) Appl Phys Lett 84:3729

    Article  CAS  Google Scholar 

  12. Cariati E, Ugo R, Cariati F, Roberto D, Masciocchi N, Galli S, Sironi A (2001) Adv Mater 13:1665

    Article  CAS  Google Scholar 

  13. Yoshida T, Iwaya M, Ando H, Oekermann T, Nonomura K, Schlettwein D, Woehrle D, Minoura H (2004) Chem Commun:400

  14. Yoshida T, Zhang J, Komatsu D, Sawatani S, Minoura H, Pauporté T, Lincot D, Oekermann T, Schlettwein D, Tada H, Woehrle D, Funabiki K, Matsui M, Miura H, Yanagi H (2009) Adv Func Mater 19:17

    Article  CAS  Google Scholar 

  15. Yoshida T, Pauporté T, Lincot D, Oekermann T, Minoura H (2003) J Electrochem Soc 150:C608

    Article  CAS  Google Scholar 

  16. Pauporté T, Yoshida T, Cortês R, Froment M, Lincot D (2003) J Phys Chem B 107:10077

    Article  Google Scholar 

  17. Zhang J, Sun L, Ichinose K, Funabiki K, Yoshida T (2010) Phys Chem Chem Phys 12:10494

    Article  CAS  Google Scholar 

  18. O’Regan B, Schwartz DT (1995) Chem Mater 7:1349

    Article  Google Scholar 

  19. Okabe K, Selk Y, Oekerman T, Yoshida T (2008) Trans Mater Res Soc Jpn 33:1325

    CAS  Google Scholar 

  20. Sun L, Yoshida T (2009) Trans Mater Res Soc Jpn 34:283

    Article  CAS  Google Scholar 

  21. Sun L, Ichinose K, Sekiya T, Sugiura T, Yoshida T (2011) Phys Proc 14:12

    Article  CAS  Google Scholar 

  22. O’Regan B, Lenzmann F (2004) J Phys Chem B 108:4342

    Article  Google Scholar 

  23. Takahashi K, Suzuka S, Sigeyama Y, Yamaguchi T, Nakamura J, Murata K (2007) Chem Lett 36:762

    Article  CAS  Google Scholar 

  24. Ogawa Y, White MS, Sun L, Scharber MC, Sariciftci NS, Yoshida T (2014) Chem Phys Chem 15:1070

    Article  CAS  Google Scholar 

  25. Garnier J, Parize R, Appert E, Chaix-Pluchery O, Kaminski-Cachopo A, Consonni V (2015) ACS Appl Mater Interfaces 7:5820

    Article  CAS  Google Scholar 

  26. Iwamoto T, Ogawa Y, Sun L, White MS, Glowacki ED, Scharber MC, Sariciftci NS, Manseki K, Sugiura T, Yoshida T (2014) J Phys Chem C 118:16581

    Article  CAS  Google Scholar 

  27. Ichinose K, Mizuno T, White MS, Yoshida T (2014) J Electrochem Soc 161:D195

    Article  CAS  Google Scholar 

  28. Kabesova K, Dunaj-Jurco M, Serator M, Gazo J, Garaj J (1976) Inorg Chim Acta 17:161

    Article  CAS  Google Scholar 

  29. Marder SR, Perry JW, Yakymyshyn P (1994) Chem Mater 6:1137

    Article  CAS  Google Scholar 

  30. Dean JA (1999) Lange’s Handbook of Chemistry, Chapter 5, 15th edn. McGraw-Hill Inc., New york

    Google Scholar 

  31. Phillips AP (1949) J Org Chem 14:302

    Article  CAS  Google Scholar 

  32. Mineno Y, Matsukawa T, Ikeda S, Taniuchi T, Nakanishi H, Okada S, Adachi H, Yoshimura M, Mori Y, Sasaki T (2007) Mol Cryst Liq Cryst 463:55

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, “Advanced Next Generation Energy Leadership (R2601, FY2014-2016)” and Grants-in-Aid for Scientific Research B (15H03854) of Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsukasa Yoshida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (7609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuda, Y., Sun, H., Sun, L. et al. Electrochemical self-assembly of CuSCN-DAST hybrid thin films. Monatsh Chem 148, 845–854 (2017). https://doi.org/10.1007/s00706-017-1929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1929-5

Keywords

Navigation