Skip to main content
Log in

Treatment of hazardous leachate from landfill using ultrasound/H2O2 system

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The necessity of leachates treatment from the waste landfills by new ways becomes increasingly more marked. Leachates contain toxic ingredients such as pesticides, dyes, and hormonal agents, which necessarily need to be removed from the environment. It is because of their genotoxicity and estrogenic activity. The main aim of this article is to point out the possibility of using ultrasound in removing ammonia from hazardous landfills leachate. In addition to ultrasound degradation, the possibility of addition of the H2O2 was also studied. System ultrasound/H2O2 was proved to be more effective in removing ammonia and organic pollution than ultrasound alone. Tested leachate contains 3.20 g/dm3 N-NH4 +, 15 mg/dm3 CN, and 4.4 g/dm3 chemical oxygen demand (COD). We achieved degradation efficiency of 63% of ammonia which means final concentration of 1.12 g/dm3 N-NH4 +, after using pretreatment with the most efficient system H2O2 and ultrasound. COD removal efficiency was 56% (1.95 g/dm3 COD). We achieved the value 10.2 mg/dm3 for cyanide, which means 65%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pitter P (2007) Hydrochemie. VŠCHT, Praha

    Google Scholar 

  2. Dohányos M, Koller J, Strnadová N (1998) Čištění odpadních vod. VŠCHT, Praha

    Google Scholar 

  3. Mackuľak T, Smolinská M, Takáčová A, Bodík I, Škubák J, Kunštek M (2013) Vodní hospodářství 2:51

    Google Scholar 

  4. Rivas FJ, Beltrán F, Gimeno O, Carvalho F (2003) J Environ Sci Heal A 38:371

    Article  Google Scholar 

  5. Yoon J, Cho S, Cho Y, Kim S (1998) Water Sci Technol 38:209

    Article  CAS  Google Scholar 

  6. Necyaj E, Okoniewska E, Kacprzak M (2005) Desalination 182:357

    Google Scholar 

  7. Singh R, Bishnoi RN, Kirrolia A, Kumar R (2013) Bioresour Technol 127:49

    Article  CAS  Google Scholar 

  8. Čerňanský S (2014) Biologické remediácie. Vysoká škola báňská, Technická univerzita Ostrava, Ostrava

    Google Scholar 

  9. Chang JS, Law R, Chang C (1997) Water Res 31:1651

    Article  CAS  Google Scholar 

  10. Liu HL, Chen BY, Lan YW, Cheng YC (2004) Chem Eng J 97:195

    Article  CAS  Google Scholar 

  11. Fairbrother L, Shapter J, Brugger J, Southam G, Pring A, Reith F (2009) Chem Geol 265:313

    Article  CAS  Google Scholar 

  12. García DN, Gómez ZA, Navalón A, González J, Vílchez LJ (2013) Sci Total Environ 442:317

    Article  Google Scholar 

  13. Moravia GW, Amaral SCM, Lange CL (2013) Waste Manage 33:89

    Article  CAS  Google Scholar 

  14. Prousek J, Priesolová S (2002) Chem Listy 96:893

    CAS  Google Scholar 

  15. Prousek J (2007) Pure Appl Chem 79:2325

    Article  CAS  Google Scholar 

  16. Brock M, Eggert T, Palisaar JR, Roghmann F, Braun K, Loppenberg B, Sommerer F, Noldus J, Bodman C (2013) J Urol 189:93

    Article  Google Scholar 

  17. Sonn AG, Natarajan S, Margolins JA, MacAiran M, Lieu P, Huang J, Dorey FJ, Marks SL (2013) J Urol 189:86

    Article  Google Scholar 

  18. Arellano PAC, Martínez SS (2007) Int J Hydrogen Energ 32:3163

    Article  Google Scholar 

  19. Yazici YE, Deveci H, Alp I, Uslu T (2007) Desalination 216:209

    Article  CAS  Google Scholar 

  20. Li W, Zhou Q, Hua T (2010) Int J Chem Eng 2010:2

    Article  Google Scholar 

  21. Li Y, Hsieh PW, Mahmudov R, Wei X, Huang PC (2013) J Hazard Mater 244–245:403

    Article  Google Scholar 

  22. Štengl V, Šubrt J (2004) Chem Listy 98:324

    Google Scholar 

  23. Ma YH (2012) Sustain Environ Res 22:271

    CAS  Google Scholar 

  24. Huang H, Zhang P, Xiao J, Xiao D, Gao F (2016) Ultrason Sonochem. doi:10.1016/j.ultsonch.2016.08.019

    Google Scholar 

  25. Babu GS, Ashokkumar M, Neppolian B (2016) Top Curr Chem 75:374

    Google Scholar 

  26. De La Rochebrochard S, Naffrechoux E, Drogui P, Mercier G, Blais FJ (2013) Ultrason Sonochem 20:109

    Article  Google Scholar 

  27. Foo KY, Hameed BH (2009) J Hazard Mater 171:57

    Article  Google Scholar 

  28. Kurniawan TA, Lo W-H, Chan GYS (2006) Chem Eng J 125:45

    Article  Google Scholar 

  29. Deng Y, Englehardt JD (2007) Waste Manage 27:385

    Article  Google Scholar 

  30. Murray CA, Parsons SA (2004) Water Sci Technol 4:115

    Google Scholar 

  31. Li W, Zhou Q, Hua T (2010) Int J Chem Eng 2010:8

    Article  Google Scholar 

  32. Tizaoui C, Bouselmi L, Mansouri L, Ghrabi A (2007) J Hazard Mater 140:320

    Article  Google Scholar 

  33. Iordache I, Nechita MT, Aelenei N, Rosca I, Apostolescu G, Peptanariu P (2003) Pol J Environ Stud 12:735

    CAS  Google Scholar 

  34. Mackuľak T, Prousek J, Švorc Ľ, Ryba J, Škubák J, Drtil M (2013) Desalin Water Treat 51:22

    Google Scholar 

  35. Horáková M (2003) Analytika vody. VŠCHT, Praha

    Google Scholar 

Download references

Acknowledgements

This research was conducted with support of the Slovak research and development agency under Contract No. APVV 037212 and the Science Grant Agency of the Slovak Ministry of Education (VEGA) Project Nos. 1/0631/15 and 1/0543/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Gál.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tichý, J., Takáčová, A., Smolinská, M. et al. Treatment of hazardous leachate from landfill using ultrasound/H2O2 system. Monatsh Chem 148, 563–570 (2017). https://doi.org/10.1007/s00706-017-1919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1919-7

Keywords

Navigation