Skip to main content
Log in

Segmental dynamics in interfacial region of composite materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work, we preformed dynamic Monte Carlo simulations to investigate the interfacial behaviors of polymers with two-dimensional filler. It was found that both the distributions of local segmental mobility and local glass transition temperatures in interfacial regions are controlled by interfacial interaction. For the system without interfacial interaction, the segments near interface have stronger mobility than those in bulk, due to the lower segment density. If the interfacial interaction is weakly attractive, there is no obvious difference of mobility between the interfacial and internal segments and no bound polymer exists near the interface. If the attractive interfacial interaction is strong, a gradient of local glass transition temperatures was observed, which demonstrates the presence of bound polymers in many layers with different segmental mobility. These findings could be used to explain the various experimental results about the segmental dynamics in the interfacial regions of polymer nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Balazs AC, Emrick T, Russell TP (2006) Science 314:1107

    Article  CAS  Google Scholar 

  2. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nature Nanotech 3:327

    Article  CAS  Google Scholar 

  3. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350

    Article  CAS  Google Scholar 

  4. Nie Y, Huang G, Qu L, Wang X, Weng G, Wu J (2011) Polymer 52:3234

    Article  CAS  Google Scholar 

  5. Carretero-González J, Retsos H, Verdejo R, Toki S, Hsiao BS, Giannelis EP, López-Manchado MA (2008) Macromolecules 41:6763

    Article  Google Scholar 

  6. Hao T, Zhou Z, Nie Y, Zhu L, Wei Y, Li S (2016) Polymer 100:10

    Article  CAS  Google Scholar 

  7. Nie Y, Hao T, Wei Y, Zhou Z (2016) RSC Adv 6:50451

    Article  CAS  Google Scholar 

  8. Nie Y, Zhang R, Zheng K, Zhou Z (2016) Polymer 76:1

    Article  Google Scholar 

  9. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Macromolecules 41:2727

    Article  CAS  Google Scholar 

  10. Lang RJ, Simmons DS (2013) Macromolecules 46:9818

    Article  CAS  Google Scholar 

  11. Liu J, Wu Y, Shen J, Gao Y, Zhang L, Cao D (2011) Phys Chem Chem Phys 13:13058

    Article  CAS  Google Scholar 

  12. Gao Y, Liu J, Zhang L, Cao D (2014) Macromol Theory Simul 23:36

    Article  CAS  Google Scholar 

  13. Tsagaropoulos G, Eisenberg A (1995) Macromolecules 28:6067

    Article  CAS  Google Scholar 

  14. Chen L, Zheng K, Tian Y, Hu K, Wang X, Liu C, Li Y, Cui P (2010) Macromolecules 43:1076

    Article  CAS  Google Scholar 

  15. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Science 309:456

    Article  CAS  Google Scholar 

  16. Kaufman S, Slichter WP, Davis DD (1970) J Polym Sci, Part A: Polym Chem 9:829

    Article  Google Scholar 

  17. Metin B, Blum FD (2006) J Chem Phys 54:125

    Google Scholar 

  18. Litvinov VM, Steeman PAM (1999) Macromolecules 32:8476

    Article  CAS  Google Scholar 

  19. Litvinov VM, Orza RA, Klüppel M, Duin MV, Magusin PCMM (2011) Macromolecules 44:4887

    Article  CAS  Google Scholar 

  20. Roe RJ, Davis DD, Kwei BTK (1970) Am Phys Soc II(15):308

    Google Scholar 

  21. Arrighi V, McEwen IJ, Qian H, Prieto MBS (2003) Polymer 44:6259

    Article  CAS  Google Scholar 

  22. Gagliardi S, Arrighi V, Ferguson R, Telling MTF (2001) Phys B 301:110

    Article  CAS  Google Scholar 

  23. Vo LT, Anastasiadis SH, Giannelis EP (2011) Macromolecules 44:6162

    Article  CAS  Google Scholar 

  24. Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Macromolecules 35:9756

    Article  CAS  Google Scholar 

  25. Starr FW, Schrder TB, Glotzer SC (2002) Macromolecules 35:4481

    Article  CAS  Google Scholar 

  26. Fragiadakis D, Pissis P, Bokobza L (2006) J Non-Cryst Solids 352:4969

    Article  CAS  Google Scholar 

  27. Kraus G, Gruver JT (1970) J Polym Sci Part A 8:571

    Article  CAS  Google Scholar 

  28. Bogoslovov RB, Roland CM, Ellis AR, Randall AM, Robertson CG (2008) Macromolecules 41:1289

    Article  CAS  Google Scholar 

  29. Ash BJ, Siegel RW, Schadler LS (2004) J Polym Sci, Part B: Polym Phys 42:4371

    Article  CAS  Google Scholar 

  30. Anastasiadis SH, Karatasos K, Vlachos G (2000) Phys Rev Lett 84:915

    Article  CAS  Google Scholar 

  31. Starr FW, Douglas JF (2011) Phys Rev Lett 106:115702

    Article  Google Scholar 

  32. Robertson CG, Roland CM (2008) Rubber Chem Technol 81:506

    Article  CAS  Google Scholar 

  33. Tang Q, Hu WB (2013) Phys Chem Chem Phys 15:20679

    Article  CAS  Google Scholar 

  34. Tang Q, Hu WB, Napolitano S (2014) Phys Rev Lett 112:148306

    Article  Google Scholar 

  35. Zhou Z, Yang W, Yan D, Liu H (2014) Macromol Theory Simul 76:23

    Google Scholar 

  36. Lu H, Zhou Z, Hao T, Ye X, Nie Y (2015) Macromol Theory Simul 24:335

    Article  CAS  Google Scholar 

  37. Nie Y, Ye X, Zhou Z (2014) J Chem Phys 141:074901

    Article  Google Scholar 

  38. Nie Y, Ye X, Zhou Z, Hao T, Yang W, Lu H (2015) RSC Adv 5:17726

    Article  CAS  Google Scholar 

  39. Ye X, Zhou Z, Nie Y, Ma P, Hao T, Yang W, Lu H (2016) Macromol Theory Simul 25:9

    Article  CAS  Google Scholar 

  40. Nie Y, Zhou Z, Hao T, Ye X, Yang W (2015) Macromol Theory Simul 25:187

    Article  Google Scholar 

  41. Alfrey T, Goldfinge G, Mark H (1943) J Appl Phys 14:700

    Article  CAS  Google Scholar 

  42. Curro JG, Lagasse RR, Simha R (1982) Macromolecules 15:1621

    Article  CAS  Google Scholar 

  43. Cangialosi D, Wubbenhorst M, Groenewold J, Mendes E, Schut H, Veen AV, Picken SJ (2004) Phys Rev B 70:224213

    Article  Google Scholar 

  44. Napolitano S, Rotella C, Wübbenhorst M (2012) ACS Macro Lett 1:1189

    Article  CAS  Google Scholar 

  45. Napolitano S, Cangialosi D (2013) Macromolecules 46:8051

    Article  CAS  Google Scholar 

  46. Roth CB, Dutcher JR (2015) J Electroanal Chem 13:584

    Google Scholar 

  47. Hanakata PZ, Douglas JF, Starr FW (2014) Nat Commun 5:4163

    Article  Google Scholar 

  48. Starr FW, Douglas JF (2011) Phys Rev Lett 106:115702

    Article  Google Scholar 

  49. Morita H, Tanaka K, Kajiyama T, Nishi T, Doi M (2006) Macromolecules 39:6233

    Article  CAS  Google Scholar 

  50. Napolitano S, Capponi S, Vanroy B (2013) Eur Phys J E 36:61

    Article  Google Scholar 

  51. Frieberg B, Glynos E, Green PF (2012) Phys Rev Lett 108:2684

    Article  Google Scholar 

  52. Rittigstein P, Torkelson JM (2006) J Polym Sci, Part B: Polym Phys 44:2935

    Article  CAS  Google Scholar 

  53. Hu WB, Frenkel D (2005) Adv Polym Sci 191:1

    Article  CAS  Google Scholar 

  54. Gennes DPG (2000) Eur Phys J E 2:201

    Article  Google Scholar 

  55. Gennes DPG (2000) C R Acad Sci Ser IV: Phys Astrophys 1:1179

    Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (No. 21404050) are gratefully acknowledged. The Graduate Innovation project of Jiangsu Province (No. KYZZ16_0333), the National Basic Research Program of China (973 Program, No. 2012CB821500), the Research Foundation of Jiangsu University (No. 14JDG059), the Jiangsu Planned Projects for Postdoctoral Research Funds (No. 1402019A), and the Postdoctoral Science Foundation of China (No. 2015M580394) are also appreciated. In addition, the authors want to express their gratitude to Jiangsu Province for supporting this project under the innovation/entrepreneurship program (Surencaiban[2015]26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijing Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Zhou, Z., Wang, Y. et al. Segmental dynamics in interfacial region of composite materials. Monatsh Chem 148, 1285–1293 (2017). https://doi.org/10.1007/s00706-017-1917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1917-9

Keywords

Navigation