Skip to main content
Log in

Monitoring of micropollutants and resistant bacteria in wastewater and their effective removal by boron doped diamond electrode

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The first part of our study is focused on the analysis of wastewaters composition from the effluence of four Slovak and three Czech wastewater treatment plants. The presence of 30 psychoactive substances and their main metabolites, antibiotic resistant coliforms and S. aureus were determined. The highest concentrations were observed in the case of cotinine, methamphetamine, tramadol, venlafaxine, and oxazepam. The amount of coliforms ranged from 0.6 to 2.7 log CFU/cm3. The majority of them showed ampicillin and gentamicin resistance. The amount of S. aureus ranged from 0.3 to 2.7 log CFU/cm3 with methicillin, penicillin, and erythromycin resistance. The second part of this study was focused on the treatment of respective wastewaters by anodic oxidation of contaminants by boron doped diamond electrodes, which were tested applying various current intensities (12.50, 18.75, 40.00 mA/cm2). Obtained results indicate that this method is able to effectively degrade a wide spectrum of pharmaceuticals and drugs that are insufficiently removed by traditional processes at wastewater treatment plants, such as oxazepam, venlafaxine, 3,4-methylenedioxymethamphetamine, cotinine, 11-nor-9-carboxy-Δ9-tetrahydrocannabinol, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine, and citalopram with the efficiency more than 50%. Moreover, the only 1 h lasting treatment caused the elimination of the total bacteria count including the resistant types under the detection limit.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodin T, Fick J, Jonsson M, Klaminder J (2013) Science 339:814

    Article  CAS  Google Scholar 

  2. Huerta B, Jakimska A, Gros M, Rodriguez-Mozaz S, Barcelo D (2013) J Chromatogr A 1288:63

    Article  CAS  Google Scholar 

  3. Kotyza J, Soudek P, Kafka Z, Vanek T (2009) Chem Listy 103:540

    CAS  Google Scholar 

  4. Li YF, Zhu GB, Ng WJ, Tan SK (2014) Sci Total Environ 468:908

    Article  Google Scholar 

  5. Irvine RJ, Kostakis C, Felgate PD, Jaehne EJ, Chen C, White JM (2011) Forensic Sci Int 210:69

    Article  CAS  Google Scholar 

  6. Mackulak T, Skubak J, Grabic R, Ryba J, Birosova L, Fedorova G, Spalkova V, Bodik I (2014) Sci Total Environ 494:158

    Article  Google Scholar 

  7. Petrovic M, Skrbic B, Zivancev J, Ferrando-Climent L, Barcelo D (2014) Sci Total Environ 468:415

    Article  Google Scholar 

  8. de Almeida CAA, Oliveira MS, Mallmann CA, Martins AF (2015) Environ Sci Pollut Res 22:17192

    Article  Google Scholar 

  9. Golovko O, Kumar V, Fedorova G, Randak T, Grabic R (2014) Environ Sci Pollut Res 21:7578

    Article  CAS  Google Scholar 

  10. Kajitvichyanukul P, Suntronvipart N (2006) J Hazard Mater 138:384

    Article  CAS  Google Scholar 

  11. Kovalova L, Siegrist H, Singer H, Wittmer A, McArdell CS (2012) Environ Sci Technol 46:1536

    Article  CAS  Google Scholar 

  12. Saussereau E, Lacroix C, Guerbet M, Cellier D, Spiroux J, Goulle JP (2013) Bull Environ Contam Toxicol 91:171

    Article  CAS  Google Scholar 

  13. Yuan SL, Jiang XM, Xia XH, Zhang HX, Zheng SK (2013) Chemosphere 90:2520

    Article  CAS  Google Scholar 

  14. Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) J Hazard Mater 283:551

    Article  CAS  Google Scholar 

  15. Mackul’ak T, Mosny M, Grabic R, Golovko O, Koba O, Birosova L (2015) Environ Toxicol Pharmacol 39:483

    Article  Google Scholar 

  16. Zhou Z, Jiang JQ (2015) Chemosphere 119:S95

    Article  CAS  Google Scholar 

  17. Mackulak T, Nagyova K, Faberova M, Grabic R, Koba O, Gal M, Birosova L (2015) Environ Toxicol Pharmacol 40:492

    Article  CAS  Google Scholar 

  18. Miralles-Cuevas S, Oller I, Aguirre AR, Perez JAS, Rodriguez SM (2014) Chem Eng J 239:68

    Article  CAS  Google Scholar 

  19. Karaolia P, Michael I, Garcia-Fernandez I, Aguera A, Malato S, Fernandez-Ibanez P, Fatta-Kassinos D (2014) Sci Total Environ 468:19

    Article  Google Scholar 

  20. Rajab M, Heim C, Letzel T, Drewes JE, Helmreich B (2015) Chemosphere 121:47

    Article  CAS  Google Scholar 

  21. Kraft A (2007) Int J Electrochem Sci 2:355

    CAS  Google Scholar 

  22. Cruz-Gonzalez K, Torres-Lopez O, Garcia-Leon A, Guzman-Mar JL, Reyes LH, Hernandez-Ramirez A, Peralta-Hernandez JM (2010) Chem Eng J 160:199

    Article  CAS  Google Scholar 

  23. Garcia-Montoya MF, Gutierrez-Granados S, Alatorre-Ordaz A, Galindo R, Ornelas R, Peralta-Hernandez JM (2015) J Ind Eng Chem 31:238

    Article  CAS  Google Scholar 

  24. Feng L, van Hullebusch ED, Rodrigo MA, Esposito G, Oturan MA (2013) Chem Eng J 228:944

    Article  CAS  Google Scholar 

  25. Malcher V, Mrska A, Kromka A, Satka A, Janik J (2002) Curr Appl Phys 2:201

    Article  Google Scholar 

  26. Varga M, Izak T, Kromka A, Vesely M, Hruska K, Michalka M (2012) Cent Eur J Phys 10:218

    CAS  Google Scholar 

  27. Svorc L, Jambrec D, Vojs M, Barwe S, Clausmeyer J, Michniak P, Marton M, Schuhmann W (2015) ACS Appl Mater Inter 7:18949

    Article  CAS  Google Scholar 

  28. Mackul’ak T, Vojs M, Grabic R, Golovko O, Stanova AV, Birosova L, Medved’ova A, Hives J, Gal M, Kromka A, Hanusova A (2016) Monatsh Chem 147:97

    Article  Google Scholar 

  29. Fedorova G, Randak T, Lindberg RH, Grabic R (2013) Rapid Commun Mass Spectrom 27:1751

    Article  CAS  Google Scholar 

  30. Mackul’ak T, Birosova L, Grabic R, Skubak J, Bodik I (2015) Environ Sci Pollut R 22:14000

    Article  Google Scholar 

  31. Baker DR, Ocenaskova V, Kvicalova M, Kasprzyk-Hordern B (2012) Environ Int 48:28

    Article  CAS  Google Scholar 

  32. Ort C, van Nuijs ALN, Berset JD, Bijlsma L, Castiglioni S, Covaci A, de Voogt P, Emke E, Fatta-Kassinos D, Griffiths P, Hernandez F, Gonzalez-Marino I, Grabic R, Kasprzyk-Hordern B, Mastroianni N, Meierjohann A, Nefau T, Ostman M, Pico Y, Racamonde I, Reid M, Slobodnik J, Terzic S, Thomaidis N, Thomas KV (2014) Addiction 109:1338

    Article  Google Scholar 

  33. Goni-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C (2000) Appl Environ Microbiol 66:125

    Article  CAS  Google Scholar 

  34. Guardabassi L, Dalsgaard A (2002) Danish Environmental Protection Agency, Danish Ministry of the Environment. Environ Project 722:71

    Google Scholar 

  35. Huang JJ, Hu HY, Lu SQ, Li Y, Tang F, Lu Y, Wei B (2012) Environ Int 42:31

    Article  CAS  Google Scholar 

  36. Iwane T, Urase T, Yamamoto K (2001) Water Sci Technol 43:91

    CAS  Google Scholar 

  37. Schwartz T, Kohnen W, Jansen B, Obst U (2003) FEMS Microbiol Ecol 43:325

    Article  CAS  Google Scholar 

  38. Bouki C, Venieri D, Diamadopoulos E (2013) Ecotox Environ Safe 91:1

    Article  CAS  Google Scholar 

  39. Martinez-Huitle CA, Brillas E (2009) Appl Catal B-Environ 87:105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the grants of the Slovak Research and Development Agency (APVV-0122-12 and APVV-0365-12) and by Grant Agency of the Slovak Republic 1/0785/14. Authors would like to thank STU for the financial support “Grantová schéma na podporu mladých výskumníkov: Výskyt najviac používaných antibiotík v odpadových vodách v Bratislave a ich možný spôsob degradácie.” This work was also supported by the CENAKVA CZ.1.05/2.1.00/01.0024 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Gál.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackuľak, T., Marton, M., Radičová, M. et al. Monitoring of micropollutants and resistant bacteria in wastewater and their effective removal by boron doped diamond electrode. Monatsh Chem 148, 539–548 (2017). https://doi.org/10.1007/s00706-016-1914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1914-4

Keywords

Navigation