Skip to main content

Advertisement

Log in

Detection of nanoparticles released at finishing of dental composite materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Newly developed dental composite materials contain increased concentrations of filler particles of the nanometer size to produce materials with high mechanical and wear resistance, improved polishability, and long-lasting gloss. With nanocomposites, however, a question arises on possible health risk caused by filler nanoparticles released during finishing and polishing nanocomposite restorations in dental cabinets. As data in the current literature are conflicting, our study was focused on detailed characterization of aerosol particles released during grinding nanocomposites Filtek Ultimate and Estelite Sigma Quick by diamond and tungsten carbide bladed burs. The results were compared with the aerosol particle size obtained from a composite Charisma reinforced with micrometer-size filler particles and an unfilled resin. Using a scanning mobility particle sizer and aerodynamic particle sizer, the release of nano- and micro-sized particles generated during high-speed grinding was detected. The mode of nanoparticle size distribution ranged not only from less than 16.0 to 51.6 nm for both nanocomposites, but also for the microhybrid composite and the unfilled resin. However, the amount of nanoparticles in the aerosol (5.0–68) × 103 cm−3 was not high exceeding 1–8.5 times their background concentration. The release of nanoparticles independently on the filler particle size and their content might suggest that the aerosol nanoparticles may originate from thermal decomposition of composite polymeric matrix due to friction heat rather than from filler nanoparticles. Due to the potential adverse health effects of nanoparticles, more detailed research is needed to investigate the effect of finishing conditions on the nanoparticle generation and their chemical composition to avoid any potential risk to dental staff. A study of the aerosol formed during grinding with water cooling to avoid heating will also be carried out.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rawls HR, Esquivel-Upshaw JE (2003) Restorative resins. In: Anusavice KJ (ed) Phillips science of dental materials. Saunders Elsevier, St. Louis, p 399

    Google Scholar 

  2. Stansbury JW (2000) J Esthet Dent 12:300

    Article  CAS  Google Scholar 

  3. Klapdohr S, Moszner N (2005) Monatsh Chem 136:21

    Article  CAS  Google Scholar 

  4. Mitra SB, Wu D, Holmes BN (2003) J Am Dent Assoc 134:1382

    Article  CAS  Google Scholar 

  5. Liou SH, Tsai CS, Pelclova D, Schubauer-Berigan MK, Schulte PA (2015) J Nanopart Res 17:413

    Article  Google Scholar 

  6. Toyokuni S (2008) IUBMB Life 60:441

    Article  CAS  Google Scholar 

  7. Bakand S, Hayes A, Dechsakulthorn F (2012) Inhal Toxicol 24:125

    Article  CAS  Google Scholar 

  8. Moller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S (2010) Free Radic Res 44:1

    Article  CAS  Google Scholar 

  9. Chang X, Zhang Y, Tang M, Wang B (2013) Nanoscale Res Lett 8:51

    Article  Google Scholar 

  10. Bogdan A, Buckett MI, Japuntich DA (2014) J Occup Environ Hyg 11:415

    Article  CAS  Google Scholar 

  11. Van Landuyt KL, Yoshihara K, Geebelen B, Peumans M, Godderis L, Hoet P, Van Meerbeek B (2012) Dent Mater 28:1162

    Article  Google Scholar 

  12. Van Landuyt KL, Hellack B, Van Meerbeek B, Peumans M, Hoet P, Wiemann M, Kuhlbusch TA, Asbach C (2014) Acta Biomater 10:365

    Article  Google Scholar 

  13. Smolik J, Ondrackova L, Marsikova J (2011) Chem Listy 105:371

    CAS  Google Scholar 

  14. Lloyd BA, Rich JA, Brown WS (1978) J Dent Res 57:675

    Article  CAS  Google Scholar 

  15. Khlystov A, Stanier C, Pandis SN (2004) Aerosol Sci Tech 38:229

    Article  CAS  Google Scholar 

  16. Shi H, Magaye R, Castranova V, Zhao J (2013) Part Fibre Toxicol 10:15

    Article  CAS  Google Scholar 

  17. Londahl J, Moller W, Pagels JH, Kreyling WG, Swietlicki E, Schmid O (2014) J Aerosol Med Pulm Drug Deliv 27:229

    Article  Google Scholar 

  18. Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, Vlckova S, Schwarz J, Zikova N, Kacer P, Komarc M, Belacek J, Zakharov S (2015) J Breath Res 9:036008

    Article  Google Scholar 

  19. Pelclova D, Zdimal V, Fenclova Z, Vlckova S, Turci F, Corazzari I, Kacer P, Schwarz J, Zikova N, Makes O, Syslova K, Komarc M, Belacek J, Navratil T, Machajova M, Zakharov S (2016) Occup Environ Med 73:110

    Article  CAS  Google Scholar 

  20. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Syslova K, Navratil T, Schwarz J, Zikova N, Barosova H, Turci F, Komarc M, Pelcl T, Belacek J, Kukutschova J, Zakharov S (2016) J Breath Res 10:016004

    Article  Google Scholar 

  21. Klusackova P, Lebedova J, Kacer P, Kuzma M, Brabec M, Pelclova D, Fenclova Z, Navratil T (2008) Prostaglandins Leukot Essent Fatty Acids 78:281

    Article  CAS  Google Scholar 

  22. Pelclova D, Zdimal V, Kacer P, Fenclova Z, Vlckova S, Komarc M, Navratil T, Schwarz J, Zikova N, Makes O, Syslova K, Belacek J, Zakharov S (2016) J Breath Res 10:036004

    Article  Google Scholar 

  23. EASHW (2014) Priorities for occupational safety and health research in Europe for the years 2013–2020. Publications Office of the European Union. Available: https://osha.europa.eu/en/publications/reports/summary-priorities-for-osh-research-in-eu-for-2013-20. Accessed 8 Aug 2016

Download references

Acknowledgements

The authors would like to thank the Charles University in Prague project P 25/1LF/2, P28/1LF/6, 44/16/RPZP Project of the Ministry of Health and EU Project, Material-Technical Research Base for the Diagnostics and Treatment of Environmentally caused and Oncological Disorders and their Risks, in the General University Hospital in Prague” (reg. No. CZ.2.16/3.1.00/24.12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Pelclova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradna, P., Ondrackova, L., Zdimal, V. et al. Detection of nanoparticles released at finishing of dental composite materials. Monatsh Chem 148, 531–537 (2017). https://doi.org/10.1007/s00706-016-1912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1912-6

Keywords

Navigation