Skip to main content
Log in

Synthesis of LaFeO3 nanopowders by glycine–nitrate process without using any solvent: effect of temperature

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Nano-sized LaFeO3 powders were prepared first time by glycine–nitrate combustion process at different temperatures without using water or any other solvent for the preparation of precursor solution and thus avoids impurities caused by water completely. The structures of phases, calcined at different temperatures, were refined in the space group Pbnm with orthorhombic setting and a good agreement was obtained between the observed and calculated XRD patterns. The crystallite size and specific surface area during the decomposition process were monitored up to 1200 °C. A pure nano-sized LaFeO3 powder with high specific surface area of 18.30 m2/g and a crystallite size of 49.35 nm was obtained after calcination at 400 °C, while TEM investigations reveal a porous powder with particles in the range of 46–69 nm. Calcinations to 1200 °C result in crystallite sizes up to 82.35 nm. Magnetic measurements reveal that LaFeO3 powders are anti-ferromagnetic. Both magnetic susceptibility and effective magnetic moments of the samples increase with decreasing particle size because of an increasing fraction of atoms lie at or near the surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Minh NQ (1993) J Am Ceram Soc 76:563

    Article  CAS  Google Scholar 

  2. Delmastro A, Mazza D, Ronchetti S, Vallino M, Spinicci R, Brovetto P, Salis M (2001) Mater Sci Eng B 79:14

    Article  Google Scholar 

  3. Ming Q, Nersesyan MD, Wagner A, Ritchie J, Richardson JT, Luss D, Jacobson AJ, Yang YL (1999) Solid State Ionics 122:113

    Article  CAS  Google Scholar 

  4. Arakawa T, Kurachi H, Shiokawa J (1985) J Mater Sci 20:1207

    Article  CAS  Google Scholar 

  5. Shimizu Y, Shimabukuro M, Arai H, Seiyama T (1985) Chem Lett 163:917

    Article  Google Scholar 

  6. Martinelli G, Carotta MC, Ferroni M, Sadaoka Y, Traversa E (1999) Sens Actuators B 55:99

    Article  CAS  Google Scholar 

  7. Seo JW, Fullerton EE, Nolting F, Scholl A, Fompeyrine J, Locquet J-P (2008) J Phys: Condens Matter 20:264014

    CAS  Google Scholar 

  8. Geller S, Raccah PM (1970) Phys Rev B 2:1167

    Article  Google Scholar 

  9. Köferstein R, Jäger L, Zenkner M, Müller T, Abicht H-P (2008) Mater Chem Phys 112:531

    Article  Google Scholar 

  10. Orlov AV, Shlyakhtin OA, Vinokurov AL, Knotko AV, Tret’yakov YD (2005) Inorg Mater 41:1194

    Article  CAS  Google Scholar 

  11. Kondakindi RR, Karan K, Peppley BA (2012) Ceram Int 38:449

    Article  CAS  Google Scholar 

  12. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748

  13. Prado-Gonjal J, Arévalo-López ÁM, Morán E (2011) Mater Res Bull 46:222

    Article  CAS  Google Scholar 

  14. Wang J, Liu Q, Xue D, Li F (2002) J Mater Sci Lett 21:1059

    Article  CAS  Google Scholar 

  15. Kumar M, Srikanth S, Ravikumar B, Alex TC, Das SK (2009) Mater Chem Phys 113:803

    Article  CAS  Google Scholar 

  16. Köferstein R, Ebbinghaus SG (2013) Solid State Ionics 231:43

    Article  Google Scholar 

  17. Shannon RD (1976) Acta Crystallogr A 32:751

    Article  Google Scholar 

  18. Georgea M, Johna AM, Naira SS, Joyb PA, Anantharamana MR (2006) J Magn Magn Mater 302:190

    Article  Google Scholar 

  19. Laberty C, Alphonse P, Demai JJ, Sarda C, Rousset A (1997) Mater Res Bull 32:249

    Article  CAS  Google Scholar 

  20. Rezlescu N, Rezlescu E, Popa PD, Popovici E, Doroftei C, Ignat M (2013) Mater Chem Phys 137:922

    Article  CAS  Google Scholar 

  21. Vasoya NH, Vanpariya LH, Sakariya PN, Timbadiya MD, Pathak TK, Lakhani VK, Modi KB (2010) Ceram Int 36:947

    Article  CAS  Google Scholar 

  22. Shter GE, Schwartzman AR, Grader GS (1995) Appl Supercond 3:543

    Article  CAS  Google Scholar 

  23. Andoulsi R, Horchani-Naifer K, Férid M (2012) Cerâmica 58:126

    Article  CAS  Google Scholar 

  24. Nakayama S (2001) J Mater Sci 36:5643

    Article  CAS  Google Scholar 

  25. Yan J-Q, Zhou J-S, Goodenough JB (2004) Phys Rev B 70:014402

    Article  Google Scholar 

  26. Harada A, Taniyama T, Takeuchi Y, Sato T, Kyômen T, Itoh M (2007) Phys Rev B 75:184426

    Article  Google Scholar 

  27. Thirumalairajan S, Girija K, Mastelaro VR, Ponpandian N (2015) J Mater Sci: Mater Electron 26:8652

    CAS  Google Scholar 

  28. Jain SR, Adiga KC, Verneker VRP (1981) Combust Flame 40:71

    Article  CAS  Google Scholar 

  29. Phadatare MR, Salunkhe AB, Khot VM, Sathish CL, Dhawale DS, Pawar SH (2013) J Alloys Compd 546:314

    Article  CAS  Google Scholar 

  30. Li J, Kou X, Qin Y, He H (2002) Phys Stat Sol 191:255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grants Commission, New Delhi for financial support under the UGC Major Research Project (F.No. 41-284/2012SR; dated 13.07.2012). Authors are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDX, SEM and TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, D. Synthesis of LaFeO3 nanopowders by glycine–nitrate process without using any solvent: effect of temperature. Monatsh Chem 148, 879–886 (2017). https://doi.org/10.1007/s00706-016-1818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1818-3

Keywords

Navigation