Skip to main content
Log in

PAMAM-dendrimer bearing 1,2-diphenylethyne core obtained by palladium-catalyzed coupling assisted by silver oxide: in vitro evaluation of antioxidant properties

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A new dendrimer with a 1,2-diphenylacetylene core and PAMAM-type dendrons was obtained in 55 % yield by a palladium-catalyzed reaction assisted by silver oxide [(PPh3)2PdCl2/Ag2O] from hypercore derivative of 17α-ethynylestradiol and dendrons with iodobenzene as focal point. The structure of this new dendrimer was unambiguously established by 1H, 13C NMR, HETCOR, 1H–13C HMBC, and HRMS. Due to the structure and aqueous solubility of the dendrimer, preliminary in vitro antioxidant potential was evaluated by ferric reducing antioxidant power assay, showing values 84 % higher than reduced glutathione. From DPPH assay, it was concluded that the dendrimer exhibited a scavenging power slightly higher than ascorbic acid. Because of its properties, the synthesized dendrimer could be a good candidate for future assays in biological models for specific diseases where oxidative stress plays an important role.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hawker CJ, Frechet JMJ (1990) J Am Chem Soc 112:7638

    Article  CAS  Google Scholar 

  2. Wooley KL, Hawker CJ, Frechet JMJ (1991) J Am Chem Soc 113:4252

    Article  CAS  Google Scholar 

  3. Maiti PK, Caing T, Wang G, Goddard WA (2014) Macromolecules 37:6236

    Article  Google Scholar 

  4. Shanmugasundaram KR, Ramanujam S, Shanmugasundaram ERB (1994) J Ethnopharmacol 42:83

    Article  CAS  Google Scholar 

  5. Lee CY, Sharma A, Cheong JE, Nelson JL (2009) Bioorg Med Chem Lett 19:6326

    Article  CAS  Google Scholar 

  6. Pan J, Ma L, Zhao J, Zhao J, Ouyang L, Guo L (2013) Synlett 24:1011

    Article  CAS  Google Scholar 

  7. Li C, Wei Y, Shi W, Wang J, Wang B (2015) Prog React Kinet Mech 4:279

    Article  Google Scholar 

  8. Soto-Castro D, Cruz-Morales JA, Ramírez MT, Guadarrama P (2012) Bioorg Chem 41–42:13

    Article  Google Scholar 

  9. Soto-Castro D, Magaña-Vergara NE, Farfán N, Santillan R (2014) Tetrahedron Lett 55:1014

    Article  CAS  Google Scholar 

  10. Chinchilla R, Najera C (2007) Chem Rev 107:874

    Article  CAS  Google Scholar 

  11. Mori A, Kawashima J, Shimada T, Suguro M, Hirabayashi K, Nishihara Y (2000) Org Lett 2:2935

    Article  CAS  Google Scholar 

  12. Gabano E, Cassino C, Bonetti S, Prandi C, Colangelo D, Ghiglia AL, Osella D (2005) Org Biomol Chem 3:3531

    Article  CAS  Google Scholar 

  13. Novák Z, Nemes P, Kotschy A (2004) Org Lett 6:4917

    Article  Google Scholar 

  14. Csékei M, Novák Z, Kotschy A (2008) Tetrahedron 64:975

    Article  Google Scholar 

  15. Tomalia DA, Berry V, Hall M, Hedstrand DM (1987) Macromolecules 20:1164

    Article  CAS  Google Scholar 

  16. Taylor RJK (ed) (1994) Organocopper reagents: a practical approach. Oxford University Press, New York, p 217

    Google Scholar 

  17. Arterburn JB, Rao KB, Perry MC (2000) Tetrahedron Lett 41:839

    Article  CAS  Google Scholar 

  18. Rodríguez-Molina B, Pozos A, Cruz R, Romero M, Flores B, Farfán N, Santillan R, Garcia-Garibay MA (2010) Org Biomol Chem 8:2993

    Article  Google Scholar 

  19. Halbes-Letinois U, Weibel JM, Pale P (2007) Chem Soc Rev 36:759

    Article  CAS  Google Scholar 

  20. Amorati R, Valgimigli L (2015) Free Radical Res 49:633

    Article  CAS  Google Scholar 

  21. Islamian JP, Mehrali H (2015) Cell J (Yakhteh) 16:386

    Google Scholar 

  22. Katalinic V, Milos M, Kulisic T, Jukic M (2006) Food Chem 94:550

    Article  CAS  Google Scholar 

  23. Miura T, Muraoka S, Ogiso T (1997) Life Sci 60:301

    Article  Google Scholar 

  24. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Free Radical Biol Med 49:1603

    Article  CAS  Google Scholar 

  25. Modasiya MK, Patel VM (2012) Int J Pharm Life Sci 3:1490

    CAS  Google Scholar 

  26. Friedhofen JH, Vögtle F (2006) New J Chem 30:32

    Article  CAS  Google Scholar 

  27. Benzie IFF, Strain JJ (1996) Anal Biochem 239:70

    Article  CAS  Google Scholar 

  28. Katalinic V, Milos M, Modun D, Music I, Boban M (2004) Food Chem 86:593

    Article  CAS  Google Scholar 

  29. Gülҫin I (2007) Amino Acids 32:431

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CONACyT for financial support, Ma. T. Cortez for NMR spectra and Cuéllar Rivera Geiser for HRMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia Soto-Castro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto-Castro, D., Santillan, R., Guadarrama, P. et al. PAMAM-dendrimer bearing 1,2-diphenylethyne core obtained by palladium-catalyzed coupling assisted by silver oxide: in vitro evaluation of antioxidant properties. Monatsh Chem 147, 1839–1847 (2016). https://doi.org/10.1007/s00706-016-1718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1718-6

Keywords

Navigation