Skip to main content
Log in

Ag-supported nanozeolite L-modified electrode: a new high performance nonenzymatic hydrogen peroxide sensor

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, nanozeolite L is synthesized using an organic template-free system via hydrothermal approach. Its characterization shows that spherical nanoparticles with diameter in the range of 40–70 nm and high surface area are formed. After loading nanozeolite L with silver ions, it was mixed with carbon paste to prepare the modified electrode. The modified electrode was activated at an appropriate potential to convert Ag ions into Ag particles (Ag/LCPE) and its electrochemical properties were studied by cyclic voltammetry and amperometry methods. The results show that the constructed sensor has high catalytic activity and responds to H2O2 in a wide linear range with high sensitivity. The sensor had a low detection limit of 2 µM (S/N = 3) with a fast amperometric response time of 2 s. The high catalytic activity of proposed sensor results from the porous structure of nanozeolite L which provides high surface area for the formation of Ag active centers. Other features of the proposed sensor are high selectivity, stability, reproducibility, and repeatability. Also, the practical feasibility of the proposed sensor has been evaluated for the determination of H2O2 in human urine samples with good recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S (2006) Anal Chim Acta 557:78

    Article  CAS  Google Scholar 

  2. Tzanov T, Costa SA, Gubitz GM, Cavaco-Paulo AJ (2002) Biotechnol 93:87

    CAS  Google Scholar 

  3. Zayats M, Baron R, Popov I, Willner I (2005) Nano Lett 5:21

    Article  CAS  Google Scholar 

  4. Raman RK, Shukla AK (2007) Fuel Cells 7:225

    Article  CAS  Google Scholar 

  5. Campanella L, Roversi R, Sammartino MP, Tomassetti M (1998) J Pharm Biomed Anal 18:105

    Article  CAS  Google Scholar 

  6. Quintino MSM, Winnischofer H, Araki K, Toma HE, Angnes L (2005) Analyst 130:221

    Article  CAS  Google Scholar 

  7. Drabkova WAM, Marsalek B (2007) Environ Sci Technol 41:309

    Article  CAS  Google Scholar 

  8. Poole LB, Nelson KJ (2008) Curr Opin Chem Biol 12:18

    Article  CAS  Google Scholar 

  9. Wolfbeis OS, Durkop A, Wu M, Lin ZH (2002) Angew Chem Int Ed 41:4495

    Article  CAS  Google Scholar 

  10. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Anal Chim Acta 594:24

    Article  CAS  Google Scholar 

  11. Usui Y, Sato K, Tanka M (2003) Angew Chem Int Ed 42:5623

    Article  CAS  Google Scholar 

  12. Hanaoka S, Lin JM, Yamada M (2001) Anal Chim Acta 426:57

    Article  CAS  Google Scholar 

  13. Li BX, Zhang ZJ, Jin Y (2001) Anal Chem 73:1203

    Article  CAS  Google Scholar 

  14. Mori I, Takasaki K, Fujita Y, Matsuo T (1998) Talanta 47:631

    Article  CAS  Google Scholar 

  15. Sakuragawa A, Taniai T, Okutani T (1998) Anal Chim Acta 374:191

    Article  CAS  Google Scholar 

  16. Tanner PA, Wong AYS (1998) Anal Chim Acta 370:279

    Article  CAS  Google Scholar 

  17. Zhu M, Huang XM, Liu LZ, Shen HX (1997) Talanta 44:1407

    Article  CAS  Google Scholar 

  18. He S, Zhang B, Liu M, Chen W (2014) RSC Adv 4:49315

    Article  CAS  Google Scholar 

  19. Santhosh P, Manesh KM, Gopalan A, Lee KP (2006) Anal Chim Acta 575:32

    Article  CAS  Google Scholar 

  20. Shen Y, Trauble M, Wittstock G (2008) Anal Chem 80:750

    Article  CAS  Google Scholar 

  21. Hazra S, Joshi H, Kumar Ghosh B, Ahmed A, Gibson T, Millner P, Ghosh N (2015) RSC Adv 5:34390

    Article  CAS  Google Scholar 

  22. Fiorito PA, Cordoba deTorresi SI (2004) Talanta 62:649

    Article  CAS  Google Scholar 

  23. Salimi A, Rahmatpanah R, Hallaj R, Roushani M (2013) Electrochim Acta 95:60

    Article  CAS  Google Scholar 

  24. Gao P, Liu D (2015) RSC Adv 5:24625

    Article  CAS  Google Scholar 

  25. Kafi AKM, Wu G, Chen A (2008) Biosens Bioelectron 24:566

    Article  CAS  Google Scholar 

  26. Wang GH, Zhang LM (2006) J Phys Chem B 110:24864

    Article  CAS  Google Scholar 

  27. Gavalas VG, Chaniotakis NA (2000) Anal Chim Acta 404:67

    Article  CAS  Google Scholar 

  28. Gavalas VG, Chaniotakis NA (2001) Anal Chim Acta 427:271

    Article  CAS  Google Scholar 

  29. Leo MD, Kuhn A, Ugo P (2007) Electroanal 19:227

    Article  Google Scholar 

  30. Liao CS, Liao CT, Tso CY, Shy HJ (2011) J Mat Chem Phys 130:270

    Article  CAS  Google Scholar 

  31. Lin J, He C, Zhao Y, Zhang S (2009) Sens Actuators, B 137:768

    Article  CAS  Google Scholar 

  32. Zhang WJ, Bai L, Lu LM, Chen Z (2012) Colloid Surf B 97:145

    Article  CAS  Google Scholar 

  33. Gu H, Yang Y, Tian J, Shi G (2013) ACS Appl Mater Interfaces 5:6762

    Article  CAS  Google Scholar 

  34. Zhao B, Liu Z, Liu G, Li Z, Wang J, Dong X (2009) Electrochem Commun 11:1707

    Article  CAS  Google Scholar 

  35. Safavi A, Maleki N, Farjami E (2009) Electroanal 21:1533

    Article  CAS  Google Scholar 

  36. Song XC, Wang X, Zheng YF, Ma R, Yin HY (2011) J Nanopart Res 13:5449

    Article  CAS  Google Scholar 

  37. Chen L, Fu X, Lu W, Chen L (2013) ACS Appl Mater Interfaces 5:284

    Article  CAS  Google Scholar 

  38. Jiang S, Zhang H, Yan Y, Zhang X (2015) RSC Adv 5:41269

    Article  CAS  Google Scholar 

  39. Kanazawa T (2006) Appl Catal B Environ 65:185

    Article  CAS  Google Scholar 

  40. Kaur B, Srivastava R (2014) Electroanal 26:1739

    Article  CAS  Google Scholar 

  41. Azizi SN, Ghasemi S, Kavian S (2014) Biosens Bioelectron 62:1

    Article  CAS  Google Scholar 

  42. Marakatti VS, Halgeri AB (2015) RSC Adv 5:14286

    Article  CAS  Google Scholar 

  43. Azizi SN, Ghasemi S, Salek Gilani N (2014) Chin J Catal 35:383

    Article  CAS  Google Scholar 

  44. Calzaferri G, Huber S, Maas H, Minkowski C (2003) Angew Chem Int Ed 42:3732

    Article  CAS  Google Scholar 

  45. Ohsuna T, Slater B, Gao F, Yu J, Sakamoto Y, Zhu G, Terasaki O, Vaughan DEW, Qiu S, Catlow CRA (2004) Chem Eur J 10:5031

    Article  CAS  Google Scholar 

  46. Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072

    Article  CAS  Google Scholar 

  47. Tosheva L, Valtchev VP (2005) Chem Mater 17:2494

    Article  CAS  Google Scholar 

  48. Holzl M, Mintova S, Bein T (2005) Stud Surf Sci Catal 158:1

    Article  Google Scholar 

  49. Garces LJ, Makwana VD, Hincapie B, Sacco A (2003) J Catal 217:107

    CAS  Google Scholar 

  50. Ko YS, Ahn WS (1999) Bull Korean Chem Soc 20:1

    Google Scholar 

  51. Thommes M (2010) Chem Ing Tech 82:1059

    Article  CAS  Google Scholar 

  52. Wang L, Ye Y, Lu X, Wu Y, Sun L, Tan H, Xu F, Song Y (2013) Electrochim Acta 114:223

    Article  CAS  Google Scholar 

  53. Han Y, Zheng J, Dong S (2013) Electrochim Acta 90:35

    Article  CAS  Google Scholar 

  54. Honda M, Kodera T, Kita H (1986) Electrochim Acta 31:377

    Article  CAS  Google Scholar 

  55. Jingqi T, Yonglan L, Hailong L, Wenbo L, Guohui C, Xiaoyun Q, Xuping S (2011) Catal Sci Technol 1:1393

    Article  Google Scholar 

  56. Lu W, Liao F, Luo Y, Chang G, Sun X (2011) Electrochim Acta 56:2295

    Article  CAS  Google Scholar 

  57. Raoof JB, Ojani R, Hasheminejad E, Rashid-Nadimi S (2012) Appl Surf Sci 258:2788

    Article  CAS  Google Scholar 

  58. Lin DH, Jiang YX, Wang Y, Sun SG (2008) J Nanomater 2008:1

  59. Kurowska E, Brzozka A, Jarosz M, Sulka GD, Jaskuła M (2013) Electrochim Acta 104:439

    Article  CAS  Google Scholar 

  60. Azizi SN, Ghasemi S, Samadi-Maybodi A, Ranjbar-Azad M (2015) Sens Actuators, B 216:271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Naser Azizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, S.N., Ghasemi, S. & Gilani, N.S. Ag-supported nanozeolite L-modified electrode: a new high performance nonenzymatic hydrogen peroxide sensor. Monatsh Chem 147, 1467–1474 (2016). https://doi.org/10.1007/s00706-016-1664-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1664-3

Keywords

Navigation