Skip to main content
Log in

Theoretical study on the complexation of the chloride, bromide, and iodide anions with dodecabenzylbambus[6]uril

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using quantum mechanical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril–Cl, dodecabenzylbambus[6]uril–Br, and dodecabenzylbambus[6]uril–I were derived. In these three complexes, each of the considered univalent halide anions, included in the center of the macrocyclic cavity, is bound by 12 weak C–H···X (X = Cl, Br, I) hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. The lengths of these C–H···X hydrogen bonds increase in the series of Cl < Br < I.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  2. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621

    Article  CAS  Google Scholar 

  3. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959

    Article  CAS  Google Scholar 

  4. Freeman WA, Mock WL, Shih NY (1981) J Am Chem Soc 103:7367

    Article  CAS  Google Scholar 

  5. Mock WL, Shih NY (1983) J Org Chem 48:3618

    Article  CAS  Google Scholar 

  6. Mock WL, Shih NY (1986) J Org Chem 51:4440

    Article  CAS  Google Scholar 

  7. Mock WL, Shih NY (1988) J Am Chem Soc 110:4706

    Article  CAS  Google Scholar 

  8. Mock WL, Shih NY (1989) J Am Chem Soc 111:2697

    Article  CAS  Google Scholar 

  9. Isobe H, Tomita N, Lee JW, Kim HJ, Kim K, Nakamura E (2000) Angew Chem Int Ed 39:4257

    Article  CAS  Google Scholar 

  10. Isobe H, Sota S, Lee JW, Kim HJ, Kim K, Nakamura E (2005) Chem Commun 1549–1551

  11. Tan Y, Choi S, Lee JW, Ko YH, Kim K (2002) Macromolecules 35:7161

    Article  CAS  Google Scholar 

  12. Márquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806

    Article  Google Scholar 

  13. Buschmann HJ, Mutihac L, Mutihac RC, Schollmeyer E (2005) Thermochim Acta 430:79

    Article  CAS  Google Scholar 

  14. Buschmann HJ, Schollmeyer E, Mutihac L (2003) Thermochim Acta 399:203

    Article  CAS  Google Scholar 

  15. Svec J, Necas M, Sindelar V (2010) Angew Chem Int Ed 49:2378

    Article  CAS  Google Scholar 

  16. Havel V, Svec J, Wimmerova M, Dusek M, Pojarova M, Sindelar V (2011) Org Lett 13:4000

    Article  CAS  Google Scholar 

  17. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  18. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  19. Kříž J, Dybal J, Makrlík E, Vaňura P, Moyer BA (2011) J Phys Chem B 115:7578

    Article  Google Scholar 

  20. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919

    Article  Google Scholar 

  21. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:1461

    Article  Google Scholar 

  22. Makrlík E, Toman P, Vaňura P (2014) Monatsh Chem 145:551

    Article  Google Scholar 

  23. Turi L, Dannenberg JJ (1993) J Phys Chem 97:2488

    Article  CAS  Google Scholar 

  24. Rode JE, Dobrowolski JC (2002) Chem Phys Lett 360:123

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford, CT

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 entitled “Environmental Aspects of Sustainable Development of Society,” and by the Czech Ministry of Education, Youth, and Sports (Project MSMT No.: 20/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böhm, S., Makrlík, E. & Vaňura, P. Theoretical study on the complexation of the chloride, bromide, and iodide anions with dodecabenzylbambus[6]uril. Monatsh Chem 147, 697–703 (2016). https://doi.org/10.1007/s00706-015-1627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1627-0

Keywords

Navigation