Skip to main content

Advertisement

Log in

Interaction study of methyl violet 2B with DNA and voltammetric determination of DNA in aqueous solutions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Differential pulse voltammetry, cyclic voltammetry, and chronocoulometry at a hanging mercury drop electrode were used for the study of the interaction of methyl violet 2B (MV) with double-stranded DNA in 0.1 mol dm−3 acetate buffer pH 4.0. The mechanism of the electrochemical reduction of MV was also investigated, using cyclic voltammetry at a hanging mercury drop electrode. UV–Vis spectrophotometry was used for the investigation of the interaction as well. The kinetic parameters of the reduction of MV and the DNA–MV complex and the thermodynamic parameters of the formed DNA–MV complex were calculated. Moreover, the calibration dependence of the peak current of MV on the concentration of DNA in acetate buffer was constructed to be used for the indirect determination of DNA based on the decreasing peak current of MV with increasing concentration of DNA in the measured solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horakova E, Barek J, Vyskocil V (2016) Anal Lett 49:56

    Article  CAS  Google Scholar 

  2. Vyskocil V, Barek J (2009) Crit Rev Anal Chem 39:173

    Article  CAS  Google Scholar 

  3. Vyskocil V, Navratil T, Polaskova P, Barek J (2010) Electroanal 22:2034

    Article  CAS  Google Scholar 

  4. Hajkova A, Barek J, Vyskocil V (2015) Electroanal 27:101

    Article  CAS  Google Scholar 

  5. Vacek J, Havran L, Fojta M (2011) Chem Listy 105:15

    CAS  Google Scholar 

  6. Sirajuddin M, Ali S, Badshah A (2013) J Photochem Photobiol B 124:1

    Article  CAS  Google Scholar 

  7. Sabnis RW (2007) Handbook of acid-base indicators. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Balabanova M, Popova L, Tchipeva R (2003) Clin Dermatol 21:2

    Article  Google Scholar 

  9. Taylor SN, DiCarlo RP, Martin DH (2011) Sex Transm Dis 38:995

    Article  CAS  Google Scholar 

  10. Stevens LJ, Kuczek T, Burgess JR, Stochelski MA, Arnold LE, Galland L (2013) Nutr Rev 71:268

    Article  Google Scholar 

  11. Andersen WC, Turnipseed SB, Karbiwnyk CM, Lee RH, Clark SB, Rowe WD, Madson MR, Miller KE (2009) Anal Chim Acta 637:279

    Article  CAS  Google Scholar 

  12. Shen YD, Deng XF, Xu ZL, Wang Y, Lei HT, Wang H, Yang JY, Xiao ZL, Sun YM (2011) Anal Chim Acta 707:148

    Article  CAS  Google Scholar 

  13. Littlefield NA, Blackwell BN, Hewitt CC, Gaylor DW (1985) Fund Appl Toxicol 5:902

    Article  CAS  Google Scholar 

  14. Sklenar Z (2010) Pediatr pro Praxi 11:232

    Google Scholar 

  15. Vachalkova A, Novotny L, Blesova M (1996) Neoplasma 43:113

    CAS  Google Scholar 

  16. Culp SJ, Beland FA, Heflich RH, Benson RW, Blankenship LR, Webb PJ, Mellick PW, Trotter RW, Shelton SD, Greenlees KJ, Manjanatha MG (2002) Mutat Res 506–507:55

    Article  Google Scholar 

  17. European Commission (2003) http://ec.europa.eu/food/committees/regulatory/scfcah/controls_imports/summary24_en.pdf. Accessed 27 Aug 2015

  18. Oplatowska M, Donnelly RF, Majithiya RJ, Kennedy DG, Elliott CT (2011) Food Chem Toxicol 49:1870

    Article  CAS  Google Scholar 

  19. Srivastava S, Sinha R, Roy D (2004) Aquat Toxicol 66:319

    Article  CAS  Google Scholar 

  20. Sagar KA, Smyth MR, Rodriguez M, Blanco PT (1995) Talanta 42:235

    Article  CAS  Google Scholar 

  21. Sanroman MA, Pazos M, Ricart MT, Cameselle C (2004) Chemosphere 57:233

    Article  CAS  Google Scholar 

  22. Mittal A, Gajbe V, Mittal J (2008) J Hazard Mater 150:364

    Article  CAS  Google Scholar 

  23. Sun JZ, Liao ZH, Si RW, Kingori GP, Chang FX, Gao L, Shen Y, Xiao X, Wu XY, Yong YC (2014) Water Sci Technol 70:1663

    Article  CAS  Google Scholar 

  24. Kaye RC, Stonehill HI (1952) J Chem Soc 3231

  25. Hall DA, Sakuma M, Elving PJ (1966) Electrochim Acta 11:337

    Article  CAS  Google Scholar 

  26. Bengtsson G (1966) Acta Chem Scand 20:1176

    Article  CAS  Google Scholar 

  27. Thurel J, Drevon B (1961) Ann Falsif Expert Chim Tox 54:12

    CAS  Google Scholar 

  28. Bengtsson G, Nordal V, Torssell K, Smidsrød O, Lindberg AA, Jansen G, Lamm B, Samuelsson B (1969) Acta Chem Scand 23:435

    Article  CAS  Google Scholar 

  29. Perekotii VV, Temerdashev ZA, Tsyupko TG, Palenaya EA (2002) J Anal Chem 57:448

    Article  CAS  Google Scholar 

  30. Ingraham MA (1933) J Bact 26:573

    CAS  Google Scholar 

  31. Nemcova I, Nemec I (1972) Chem Pap 26:115

    CAS  Google Scholar 

  32. Skerik J (1999) Technicky receptar. FCC Public, Prague

    Google Scholar 

  33. Chi Z, Liu R, Zhao X, Sun Y, Yang B, Gao C (2009) Appl Spectrosc 63:1331

    Article  CAS  Google Scholar 

  34. Sun W, Shang Z, Li Q, Jiao K (2005) J Chin Chem Soc 52:1269

    Article  CAS  Google Scholar 

  35. Meyers RA (1995) Molecular biology and biotechnology: a comprehensive desk reference. Wiley, Weinheim

    Google Scholar 

  36. An R, Jia Y, Wan B, Zhang Y, Dong P, Li J, Liang X (2014) PLoS ONE 9:e115950. doi:10.1371/journal.pone.0115950

    Article  Google Scholar 

  37. Fojta M (2002) Electroanal 14:1449

    Article  CAS  Google Scholar 

  38. Xu YM, Zhang ZY, Zhang HY (1998) Sci China Ser C-Life Sc 41:360

    Article  CAS  Google Scholar 

  39. Zhang SF, Ling BP, Qu FL, Sun XJ (2012) Spectrochim Acta A 97:521

    Article  CAS  Google Scholar 

  40. Vyskocil V, Labuda J, Barek J (2010) Anal Bioanal Chem 397:233

    Article  CAS  Google Scholar 

  41. Ibrahim MS, Kamal MM, Temerk YM (2003) Anal Bioanal Chem 375:1024

    CAS  Google Scholar 

  42. Kucharikova K, Novotny L, Yosypchuk B, Fojta M (2004) Electroanal 16:410

    Article  CAS  Google Scholar 

  43. Yosypchuk B, Fojta M, Barek J (2010) Amalgam electrodes as tool for study of environmental important compounds and for detection of DNA damages. International Conference on Development, Energy, Environment, Economics, Puerto de la Cruz, 2010

  44. Hlavata L, Benikova K, Vyskocil V, Labuda J (2012) Electrochim Acta 71:134

    Article  CAS  Google Scholar 

  45. Carter MT, Rodriguez M, Bard AJ (1989) J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  46. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH Publishers, New York

    Google Scholar 

  47. Velasco JG (1997) Electroanal 9:880

    Article  Google Scholar 

  48. Jiao K, Li QJ, Sun W, Wang ZJ (2005) Electroanal 17:997

    Article  CAS  Google Scholar 

  49. Sun W, You J, Zhao N, Jiao K (2008) J Anal Chem 63:265

    Article  CAS  Google Scholar 

  50. Inczedy J, Lengyel T, Ure AM (1998) Compendium of analytical nomenclature: definitive rules 1997, 3rd edn. Blackwell Science, Malden

    Google Scholar 

Download references

Acknowledgments

This research was carried out within the framework of the Specific University Research (SVV). Financial support from the Grant Agency of the Czech Republic (Project P206/12/G151) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Horakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horakova, E., Vyskocil, V. & Barek, J. Interaction study of methyl violet 2B with DNA and voltammetric determination of DNA in aqueous solutions. Monatsh Chem 147, 119–126 (2016). https://doi.org/10.1007/s00706-015-1590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1590-9

Keywords

Navigation