Skip to main content
Log in

Electrochemical study of 5-nitroquinoline using carbon film electrode and its determination in model samples of drinking and river water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

This work is focused on the determination of submicromolar concentrations of 5-nitroquinoline (5-NQ) using differential pulse voltammetry (DPV) and direct current voltammetry (DCV) at a novel type of carbon film electrode (CFE). The advantages of CFE are its wide potential window in both cathodic and anodic regions (ca 3 V span), high sensitivity, and low noise of measurements. The other advantages of CFE are the possibility to quickly and easily renew the electrode surface and also non-toxicity for environment compared to mercury electrodes. Calibration dependences in deionized water are linear from 0.4 to 100 µmol dm−3, with limit of quantification (LOQ) 1 µmol dm−3 using DCV, and from 0.2 to 100 µmol dm−3, with LOQ 0.4 µmol dm−3 using DPV. The DPV method was verified for model samples of drinking and river water. The calibration dependences were linear in the concentration ranges from 0.2 to 10 µmol dm−3 for both matrices, with LOQ 0.2 µmol dm−3 for drinking water and LOQ 0.6 µmol dm−3 for river water, respectively. This work has proved the usability of CFE for submicromolar determination of 5-NQ based on cathodic reduction of the present nitro group.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barek J, Mejstrik V, Svagrova I, Zima J (1994) Chem Listy 88:341

    CAS  Google Scholar 

  2. Kaiya T, Shirai N, Kawazoe Y (1986) Chem Pharm Bull 34:881

    Article  CAS  Google Scholar 

  3. Kawazoe Y, Tachibana M (1967) Chem Pharm Bull 15:1

    Article  CAS  Google Scholar 

  4. Tachibana M, Sawaki S, Kawazoe Y (1967) Chem Pharm Bull 15:1112

    Article  CAS  Google Scholar 

  5. Jiranek I, Peckova K, Kralova Z, Moreira JC, Barek J (2009) Electrochim Acta 54:1939

    Article  CAS  Google Scholar 

  6. Barek J, Fischer J, Navratil T, Peckova K, Yosypchuk B, Zima J (2007) Electroanalysis 19:2003

    Article  CAS  Google Scholar 

  7. http://chemicalland21.com/lifescience/phar/5-nitroquinoline.htm. Accessed 25 Mar 2015

  8. Siim BG, Atwell GJ, Anderson RF, Wardman P, Pullen SM, Wilson WR, Denny WA (1997) J Med Chem 40:1381

    Article  CAS  Google Scholar 

  9. Siim BG, Atwell GJ, Wilson WR (1994) Biochem Pharmacol 48:1593

    Article  CAS  Google Scholar 

  10. Siim BG, Atwell GJ, Wilson WR (1994) Br J Cancer 70:596

    Article  CAS  Google Scholar 

  11. Siim BG, Denny WA, Wilson WR (1994) Int J Radiat Oncol Biol Phys 29:311

    Article  CAS  Google Scholar 

  12. Brezina M, Zuman P (1952) Polarografie v lekarstvi, biochemii a farmacii. Zdravotnicke nakladatelstvi v Praze, Prague

    Google Scholar 

  13. Cover RE, Folliard JT (1971) J Electroanal Chem 30:143

    Article  CAS  Google Scholar 

  14. Folliard JT, Cover RE (1971) J Electroanal Chem 33:463

    Article  CAS  Google Scholar 

  15. Adkins H, Cox FW (1938) J Am Chem Soc 60:1151

    Article  CAS  Google Scholar 

  16. Meites L, Zuman P, Scott WJ, Campbell BH, Kardos AM, Fenner TL, Rupp EB, Lampurgani L, Zuman R (1977) CRC handbook series in electrochemistry, vol 1. CRC Press, Cleveland

    Google Scholar 

  17. Pech J (1934) Collect Czech Chem Commun 6:126

    Article  CAS  Google Scholar 

  18. Laviron E, Vallat A, Meunierprest R (1994) J Electroanal Chem 379:427

    Article  Google Scholar 

  19. Zuman P, Fijalek Z, Dumanovic D, Suznjevic D (1992) Electroanalysis 4:783

    Article  CAS  Google Scholar 

  20. Cervinka O (1987) Chemie organickych sloucenin. SNTL, Prague

    Google Scholar 

  21. Giddings JM (1979) Bull Environ Contam Toxicol 23:360

    Article  CAS  Google Scholar 

  22. Patty EH (1963) Industrial hygiene and toxicology. Interscience Publishers Inc, New York

    Google Scholar 

  23. Grant WM (1962) Toxicology of the eye, Charles C. Tomas Publisher, Springfield

    Google Scholar 

  24. Liu TY, Robbat A (1991) J Chromatogr 539:1

    Article  CAS  Google Scholar 

  25. White CM, Robbat A, Hoes RM (1983) Chromatographia 17:605

    Article  CAS  Google Scholar 

  26. Gundel LA, Mahanama KRR, Daisey JM (1993) J Chromatogr 629:75

    Article  CAS  Google Scholar 

  27. Vyskocil V, Jiranek I, Danhel A, Zima J, Barek J, Wang J, Peckova K (2011) Coll Czech Chem Commun 76:1991

    Article  CAS  Google Scholar 

  28. Yosypchuk O, Karasek J, Vyskocil V, Barek J, Peckova K (2012) Sci World J 2012:1

    Article  Google Scholar 

  29. Novotny L, Yosypchuk B (2000) Chem Listy 94:1118

    CAS  Google Scholar 

  30. Yosypchuk B, Barek J, Fojta M (2006) Electroanalysis 18:1126

    Article  CAS  Google Scholar 

  31. Deylova D, Vyskocil V, Barek J (2014) J Electroanal Chem 717:237

    Article  Google Scholar 

  32. Khaskheli AR, Fischer J, Barek J, Vyskocil V, Sirajuddin Bhanger MI (2013) Electrochim Acta 101:238

    Article  CAS  Google Scholar 

  33. Eckschlager K (1991) Chemometrie. Karolinum, Prague

    Google Scholar 

  34. Smejkalova H, Vyskocil V (2014) Chem Listy 108:264

    CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out in the framework of the Specific University Research (SVV). JB and VV thank the Grant Agency of the Czech Republic (Project P206/12/G151) and TR thanks the Grant Agency of the Charles University in Prague (Project GAUK 468214) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tereza Rumlova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumlova, T., Jiranek, I., Vyskocil, V. et al. Electrochemical study of 5-nitroquinoline using carbon film electrode and its determination in model samples of drinking and river water. Monatsh Chem 147, 153–158 (2016). https://doi.org/10.1007/s00706-015-1573-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1573-x

Keywords

Navigation