Skip to main content
Log in

Environmental effects on Cu(II)-catalyzed hetero-Diels–Alder reactions: computational approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The efficiency of transition metal-catalyzed reactions critically depends on the chemical environment. This investigation addresses the role of the counterions and solvent molecules on the transition states and energetics of Cu(II)-catalyzed hetero-Diels–Alder reactions (the addition of ethyl glyoxylate to cyclopentadiene) by theoretical calculations. Ethylenediamine was used as a model ligand to systematically assess the effects caused by the counterions OTf, BF4 , PF6 , Cl, and SbF6 and the solvents CH2Cl2, CHCl3, CH3NO2, and CH3CN. It is shown how the energies of the transition states, the geometry of the Cu(II) complexes formed in the course of the catalytic reactions, and the asynchronicity of the C–C bond-forming reaction are changed by the presence of solvent molecules and counterions. Our computational results indicate the mechanistic background of experimental results and provide perspectives for an efficient choice of reaction conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Diels O, Alder K (1928) Justus Liebigs Ann Chem 460:98

    Article  CAS  Google Scholar 

  2. Kagan HB, Riant O (1992) Chem Rev 92:1007

    Article  CAS  Google Scholar 

  3. Pindur U, Lutz G, Otto C (1993) Chem Rev 93:741

    Article  CAS  Google Scholar 

  4. Reymond S, Cossy J (2008) Chem Rev 108:5359

    Article  CAS  Google Scholar 

  5. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) Angew Chem Int Edit 41:1668

    Article  CAS  Google Scholar 

  6. Corey EJ (2002) Angew Chem Int Edit 41:1650

    Article  CAS  Google Scholar 

  7. Stocking EM, Williams RM (2003) Angew Chem Int Edit 42:3078

    Article  CAS  Google Scholar 

  8. Gao X, Hall DG (2005) J Am Chem Soc 127:1628

    Article  CAS  Google Scholar 

  9. Hughes RA, Thompson SP, Alcaraz L, Moody CJ (2005) J Am Chem Soc 127:15644

    Article  CAS  Google Scholar 

  10. Deutsch HM, Collard DM, Zhang LA, Burnham KS, Deshpande AK, Holtzman SG, Schweri MM (1999) J Med Chem 42:882

    Article  CAS  Google Scholar 

  11. Baker-Glenn C, Hodnett N, Reiter M, Ropp S, Ancliff R, Gouverneur V (2005) J Am Chem Soc 127:1481

    Article  CAS  Google Scholar 

  12. Gouverneur V, Reiter M (2005) Chem Eur J 11:5806

    Article  CAS  Google Scholar 

  13. Patel RN (2001) Adv Synth Catal 343:527

    Article  CAS  Google Scholar 

  14. Cordato DJ, Mather LE, Herkes GK (2003) J Clin Neurosci 10:649

    Article  CAS  Google Scholar 

  15. Jorgensen KA (2000) Angew Chem Int Edit 39:3558

    Article  CAS  Google Scholar 

  16. Johnson JS, Evans DA (2000) Accounts Chem Res 33:325

    Article  CAS  Google Scholar 

  17. Yang WQ, Shang DJ, Liu YL, Du Y, Feng XM (2005) J Org Chem 70:8533

    Article  CAS  Google Scholar 

  18. Ghosh AK, Shirai M (2001) Tetrahedron Lett 42:6231

    Article  CAS  Google Scholar 

  19. Desimoni G, Faita G, Jorgensen KA (2006) Chem Rev 106:3561

    Article  CAS  Google Scholar 

  20. Evans DA, Miller SJ, Lectka T (1993) J Am Chem Soc 115:6460

    Article  CAS  Google Scholar 

  21. Evans DA, Miller SJ, Lectka T, von Matt P (1999) J Am Chem Soc 121:7559

    Article  CAS  Google Scholar 

  22. Desimoni G, Faita G, Jorgensen KA (2011) Chem Rev 111:PR284

  23. DeChancie J, Acevedo O, Evanseck JD (2004) J Am Chem Soc 126:6043

    Article  CAS  Google Scholar 

  24. Morschel P, Janikowski J, Hilt G, Frenking G (2008) J Am Chem Soc 130:8952

    Article  Google Scholar 

  25. Thorhauge J, Roberson M, Hazell RG, Jorgensen KA (2002) Chem Eur J 8:1888

    Article  CAS  Google Scholar 

  26. Evans DA, Olhava EJ, Johnson JS, Janey JM (1998) Angew Chem Int Edit 37:3372

    Article  CAS  Google Scholar 

  27. Morao M, McNamara JP, Hillier AH (2003) J Am Chem Soc 125:628

    Article  CAS  Google Scholar 

  28. Balta B, Ozturk C, Aviyente V, Vincent MA, Hillier IH (2008) J Org Chem 73:4800

    Article  CAS  Google Scholar 

  29. Acevedo O, Jorgensen WL (2007) J Chem Theory Comput 3:1412

    Article  CAS  Google Scholar 

  30. Fraile JM, Garcia JI, Gil MJ, Martinez-Merino V, Mayoral JA, Salvatella L (2004) Chem Eur J 10:758

    Article  CAS  Google Scholar 

  31. Johannsen M, Jorgensen KA (1996) Tetrahedron 52:7321

    Article  CAS  Google Scholar 

  32. Johannsen M, Jorgensen KA (1997) J Chem Soc Perkin Trans 2(6):1183

    Article  Google Scholar 

  33. Sakakura A, Kondo R, Matsumura Y, Akakura M, Ishihara K (2009) J Am Chem Soc 131:17762

    Article  CAS  Google Scholar 

  34. Sakakura A, Ishihara K (2011) Chem Soc Rev 40:163

    Article  CAS  Google Scholar 

  35. Taylor MS, Jacobsen EN (2006) Angew Chem Int Edit 45:1520

    Article  CAS  Google Scholar 

  36. Linder M, Brinck T (2009) Org Biomol Chem 7:1304

    Article  CAS  Google Scholar 

  37. Cheong PHY, Legault CY, Um JM, Celebi-Olcum N, Houk KN (2011) Chem Rev 111:5042

    Article  CAS  Google Scholar 

  38. Liu F, Paton RS, Kim S, Liang Y, Houk KN (2013) J Am Chem Soc 135:15642

    Article  CAS  Google Scholar 

  39. Paton RS, Kim S, Ross AG, Danishefsky SJ, Houk KN (2011) Angew Chem Int Edit 50:10366

    Article  CAS  Google Scholar 

  40. Hayden AE, DeChancie J, George AH, Dai M, Yu M, Danishefsky SJ, Houk KN (2009) J Org Chem 74:6770

    Article  CAS  Google Scholar 

  41. Jangid RK, Gupta N, Bansal RK, von Hopffgarten M, Frenking G (2011) Tetrahedron Lett 52:1721

    Article  CAS  Google Scholar 

  42. Owen ME, Carter E, Hutchings GJ, Ward BD, Murphy DM (2012) Dalton Trans 41:11085

    Article  CAS  Google Scholar 

  43. Umamaheswari V, Cias P, Pöppl A, Kaupp M, Gescheidt G (2013) Dalton Trans 43:698

    Article  Google Scholar 

  44. Bolm C, Martin M, Gescheidt G, Palivan C, Neshchadin D, Bertagnolli H, Feth M, Schweiger A, Mitrikas G, Harmer J (2003) J Am Chem Soc 125:6222

    Article  CAS  Google Scholar 

  45. Bolm C, Martin M, Gescheidt G, Palivan C, Stanoeva T, Bertagnolli H, Feth M, Schweiger A, Mitrikas G, Harmer J (2007) Chem Eur J 13:1842

  46. McCarrick MA, Wu YD, Houk KN (1993) J Org Chem 58:3330

    Article  CAS  Google Scholar 

  47. Leach AG, Houk KN (2001) J Org Chem 66:5192

    Article  CAS  Google Scholar 

  48. Kong S, Evanseck JD (2000) J Am Chem Soc 122:10418

    Article  CAS  Google Scholar 

  49. Diaz-Torres R, Alvarez S (2011) Dalton Trans 40:10742

    Article  CAS  Google Scholar 

  50. Houk KN, Li Y, Evanseck JD (1992) Angew Chem Int Edit 31:682

    Article  Google Scholar 

  51. Yepes D, Murray JS, Perez P, Domingo LR, Politzer P, Jaque P (2014) Phys Chem Chem Phys 16:6726

    Article  CAS  Google Scholar 

  52. Black K, Liu P, Xu L, Doubleday C, Houk KN (2012) Proc Natl Acad Sci USA 109:12860

    Article  CAS  Google Scholar 

  53. Jimenez-Oses G, Liu P, Matute RA, Houk KN (2014) Angew Chem Int Edit 53:8664

    Article  CAS  Google Scholar 

  54. Eric N, Jacobsen AP, Yamamoto Hisashi (1999) Comprehensive asymmetric catalysis I-III. Springer, Berlin

    Google Scholar 

  55. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  56. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  57. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  58. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc, Shawnee Mission KS

    Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford CT

Download references

Acknowledgments

This work was supported by FWF (Austria), Project No. P23847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Cias.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 698 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cias, P., Gescheidt, G. Environmental effects on Cu(II)-catalyzed hetero-Diels–Alder reactions: computational approach. Monatsh Chem 146, 1267–1274 (2015). https://doi.org/10.1007/s00706-015-1510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1510-z

Keywords

Navigation