Monatshefte für Chemie - Chemical Monthly

, Volume 146, Issue 9, pp 1455–1463 | Cite as

A modular synthesis of 1,4,5-trisubstituted 1,2,3-triazoles with ferrocene moieties

  • Klaudia Fehér
  • Ágnes Gömöry
  • Rita Skoda-Földes
Original Paper

Abstract

Regioselective synthesis of 1,2,3-triazoles with ferrocenyl moieties in positions 1, 4, and 5 was carried out in a two-step reaction sequence: a copper-mediated azide–alkyne cycloaddition followed by a palladium-catalyzed cross-coupling. A new route towards 5-iodo-1,2,3-triazoles was developed using N-iodomorpholine hydrogen iodide, instead of the corrosive and toxic ICl, as the I+ source. The novel methodology together with a consecutive Suzuki or Sonogashira reaction was shown to be a useful procedure for the synthesis of a wide range of ferrocenyl 1,2,3-triazoles with di- and triferrocenyl derivatives among them.

Graphical abstract

Keywords

Copper Cycloadditions Homogeneous catalysis Iodotriazole Metallocenes Palladium 

Notes

Acknowledgments

The authors thank for the support of the Hungarian National Science Foundation (OTKA K105632) as well as the project TÁMOP-4.2.2.A-11/1/KONV-2012-0071, realized with the support of the Hungarian Government and the European Union, with the co-funding of the European Social Fund.

References

  1. 1.
    Pibiri I, Buscemi S (2010) Curr Bioact Comp 6:208CrossRefGoogle Scholar
  2. 2.
    Siddiqui N, Ahsan W, Alam MS, Ali R, Jain S, Azad B, Akhtar J (2011) Int J Pharm Sci Rev Res 8:161Google Scholar
  3. 3.
    Fouda MFR, Abd-Elzaher MM, Abdelsamaia RA, Labib AA (2007) Appl Organomet Chem 21:613CrossRefGoogle Scholar
  4. 4.
    Ornelas C (2011) New J Chem 35:1973CrossRefGoogle Scholar
  5. 5.
    Navarro M, Castro W, Biot C (2012) Organometallics 31:5715CrossRefGoogle Scholar
  6. 6.
    Braga SS, Silva AMS (2013) Organometallics 32:5626CrossRefGoogle Scholar
  7. 7.
    Kilpin KJ, Dyson PJ (2013) Chem Sci 4:1410CrossRefGoogle Scholar
  8. 8.
    Salmon AJ, Williams ML, Wu QK, Morizzi J, Gregg D, Charman SA, Vullo D, Supuran CT, Poulsen SA (2012) J Med Chem 55:5506CrossRefGoogle Scholar
  9. 9.
    Romero T, Orenes RA, Tárraga A, Molina P (2013) Organometallics 32:5740CrossRefGoogle Scholar
  10. 10.
    Molina P, Tárraga A, Caballero A (2008) Eur J Inorg Chem 3401Google Scholar
  11. 11.
    Hildebrandt A, Lang H (2013) Organometallics 32:5640CrossRefGoogle Scholar
  12. 12.
    Rostovtsev VV, Green LK, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596CrossRefGoogle Scholar
  13. 13.
    Tornøe CW, Christensen C, Meldal M (2002) J Org Chem 67:3057CrossRefGoogle Scholar
  14. 14.
    Orthaber A, Fuchs M, Belaj F, Rechberger GN, Kappe CO, Pietschnig R (2011) Eur J Inorg Chem 2588Google Scholar
  15. 15.
    Balogh J, Skoda-Földes R (2011) Transition-metal catalyzed reactions in the synthesis of ferrocene. In: Phillips ES (ed) Ferrocenes: compounds, properties and applications. Nova Publishers, USA, pp 107–147Google Scholar
  16. 16.
    Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) J Am Chem Soc 127:15998CrossRefGoogle Scholar
  17. 17.
    Li LJ, Zhang YQ, Zhang Y, Zhu AL, Zhang GS (2014) Chin Chem Lett 25:1161CrossRefGoogle Scholar
  18. 18.
    Alonso F, Moglie Y, Radivoy G, Yus M (2012) Synlett 23:2179CrossRefGoogle Scholar
  19. 19.
    Ackermann L, Potukuchi HK, Landsberg D, Vicente R (2008) Org Lett 10:3081CrossRefGoogle Scholar
  20. 20.
    Deng J, Wu YM, Chen QY (2005) Synthesis 2730Google Scholar
  21. 21.
    Morris JC, Chiche J, Grellier C, Lopez M, Bornaghi LF, Maresca A, Supuran CT, Pouysségur J, Poulsen SA (2011) J Med Chem 54:6905CrossRefGoogle Scholar
  22. 22.
    Joubert N, Schinazi RF, Agrofoglio LA (2005) Tetrahedron 61:11744CrossRefGoogle Scholar
  23. 23.
    Ostrowski T, Januszczyk P, Cieslak M, Kazmierczak-Baranska J, Nawrot B, Bartoszak-Adamska E, Zeidler J (2011) Bioorg Med Chem 19:4386CrossRefGoogle Scholar
  24. 24.
    García-Álvarez J, Díez J, Gimeno J, Suárez FJ, Vincent C (2012) Eur J Inorg Chem 5854Google Scholar
  25. 25.
    Hein JE, Tripp JC, Krasnova LB, Sharpless KB, Fokin VV (2009) Angew Chem Int Ed 48:8018CrossRefGoogle Scholar
  26. 26.
    Carcenac Y, David-Quillot F, Abarbri M, Duchêne A, Thibonnet J (2013) Synthesis 45:633CrossRefGoogle Scholar
  27. 27.
    Panteleev J, Geyer K, Aguilar-Aguilar A, Wang L, Lautens M (2010) Org Lett 12:5092CrossRefGoogle Scholar
  28. 28.
    Schulman JM, Friedman AA, Panteleev J, Lautens M (2012) Chem Commun 48:55CrossRefGoogle Scholar
  29. 29.
    Juríček M, Stout K, Kouwer PHJ, Rowan AE (2011) Org Lett 13:3494CrossRefGoogle Scholar
  30. 30.
    Bogdan AR, James K (2011) Org Lett 13:4060CrossRefGoogle Scholar
  31. 31.
    García-Álvarez J, Díez J, Gimeno J, Suárez FJ, Vincent C (2012) Eur J Inorg Chem 5854Google Scholar
  32. 32.
    Cheng W, Jilin Y, Wei Z, Lan Z, Zheng Z (2013) J South Med Univ 33:779Google Scholar
  33. 33.
    Kuijpers BHM, Dijkmans GCT, Groothuys S, Quaedflieg PJLM, Blaauw RH, van Delft FL, Rutjes FPJT (2005) Synlett 3059Google Scholar
  34. 34.
    Wu YM, Deng J, Li Y, Chen QY (2005) Synthesis 1314Google Scholar
  35. 35.
    Li L, Zhang G, Zhu A, Zhang L (2008) J Org Chem 73:3630CrossRefGoogle Scholar
  36. 36.
    Li L, Li Y, Li R, Zhu A, Zhang G (2011) Aust J Chem 64:1383CrossRefGoogle Scholar
  37. 37.
    Yan R, El-Emir E, Rajkumar V, Robson M, Jathoul AP, Pedley RB, Årstad E (2011) Angew Chem Int Ed 50:6793CrossRefGoogle Scholar
  38. 38.
    Brotherton WS, Clark RJ, Zhu L (2012) J Org Chem 77:6443CrossRefGoogle Scholar
  39. 39.
    Barsoum DN, Brassard CJ, Deeb JHA, Okashah N, Sreenath K, Simmons JT, Zhu L (2013) Synthesis 45:2372CrossRefGoogle Scholar
  40. 40.
    Coutouli-Argyropoulou E, Tsitabani M, Petrantonakis G, Terzis A, Raptopoulou C (2003) Org Biomol Chem 1:1382CrossRefGoogle Scholar
  41. 41.
    Mamane V (2008) Mini-Rev Org Chem 5:303CrossRefGoogle Scholar
  42. 42.
    Kuik Á, Skoda-Földes R, Jánosi L, Kollár L (2007) Synthesis 1456Google Scholar
  43. 43.
    Szánti-Pintér E, Balogh J, Csók Z, Kollár L, Gömöry Á, Skoda-Földes R (2011) Steroids 76:1377Google Scholar
  44. 44.
    Balogh J, Skoda-Földes R, Vazdar K, Habuš I (2012) J Organomet Chem 703:51CrossRefGoogle Scholar
  45. 45.
    Krasnova LB, Hein JE, Fokin VV (2010) J Org Chem 75:8662CrossRefGoogle Scholar
  46. 46.
    Urbán B, Srankó D, Sáfrán Gy, Ürge L, Darvas F, Bakos J, Skoda-Földes R (2014) J Mol Catal A 395:364CrossRefGoogle Scholar
  47. 47.
    Hein JE, Krasnova LB, Iwasaki M, Fokin VV (2011) Org Synth 88:238CrossRefGoogle Scholar
  48. 48.
    Wilkening I, del Signore G, Hackenberger CPR (2011) Chem Commun 47:349CrossRefGoogle Scholar
  49. 49.
    Casas-Solvas JM, Vargas-Berenguel A, Capitán-Vallvey LF, Santoyo-González F (2004) Org Lett 6:3687CrossRefGoogle Scholar
  50. 50.
    Broadhead GD, Osgerby JM, Pauson PL (1958) J Chem Soc 655Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Klaudia Fehér
    • 1
  • Ágnes Gömöry
    • 2
  • Rita Skoda-Földes
    • 1
  1. 1.Department of Organic Chemistry, Institute of ChemistryUniversity of PannoniaVeszprémHungary
  2. 2.Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations