Skip to main content
Log in

Experimental determination of lead carbonate solubility at high ionic strengths: a Pitzer model description

Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, solubility measurements of lead carbonate, PbCO3(cr), cerussite, as a function of total ionic strengths are conducted in the mixtures of NaCl and NaHCO3 up to I = 1.2 mol kg−1 and in the mixtures of NaHCO3 and Na2CO3 up to I = 5.2 mol kg−1, at room temperature (22.5 ± 0.5 °C). The solubility constant (log K os ) for cerussite was determined as −13.76 ± 0.15 (2σ) with a set of Pitzer parameters describing the specific interactions of PbCO3(aq), \( {\text{Pb}}\left( {{\text{CO}}_{ 3} } \right)_{2}^{2 - } \), and Pb(CO3)Cl with the bulk-supporting electrolytes, based on the Pitzer model. The model developed in this work can reproduce the experimental results including model-independent solubility values from the literature over a wide range of ionic strengths with satisfactory accuracy. The model is expected to find applications in numerous fields, including the accurate description of chemical behavior of lead in geological repositories, the modeling of formation of oxidized Pb–Zn ore deposits, and the environmental remediation of lead contamination.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Gamsjäger H, Fluch A, Swinehart JH (1984) Monatsh Chem 115:251

    Article  Google Scholar 

  2. Xiong Y-L, Kirkes L, Westfall T, Roselle R (2013) Chem Geol 342:128

    Article  CAS  Google Scholar 

  3. Pirajno F, Burlow R, Huston D (2010) Ore Geol Rev 37:101

    Article  Google Scholar 

  4. Xiong Y-L, Lord ACS (2008) Appl Geochem 23:1634

    Article  CAS  Google Scholar 

  5. Taylor P, Lopata VT (1984) Can J Chem 62:395

    Article  CAS  Google Scholar 

  6. Nasanen R, Merilainen P, Leppanen K (1961) Acta Chem Scand 15:913

    Article  CAS  Google Scholar 

  7. Bilinski H, Schindler P (1982) Geochim Cosmochim Acta 46:921

    Article  CAS  Google Scholar 

  8. Powell KJ, Brown PL, Byrne RH, Gajda T, Hefter G, Luez A-K, Sjöberg S, Wanner H (2009) Pure Appl Chem 81:2425

    Article  CAS  Google Scholar 

  9. Woosley RJ, Millero FJ (2013) Marine Chem 149:1

    Article  CAS  Google Scholar 

  10. Millero FJ, Byrne RH (1984) Geochim Cosmochim Acta 48:1145

    Article  CAS  Google Scholar 

  11. Easley RA, Byrne RH (2011) Geochim Cosmochim Acta 75:5638

    Article  CAS  Google Scholar 

  12. Wolery TJ, Xiong Y-L, Long J (2010) Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10. ERMS 550239. Sandia National Laboratories, Carlsbad, NM

  13. Xiong Y-L (2011) WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. ERMS 555358, supersedes ERMS 550239. Sandia National Laboratories, Carlsbad, NM

  14. Gamsjäger H, Gajda T, Sangster J, Saxena SK, Voigt W (2012) Chemical Thermodynamics of Tin. Chemical Thermodynamics, vol 12. Elsevier, Amsterdam

  15. Sőhnel O, Novotný P (1985) Densities of aqueous solutions of inorganic substances. Elsevier, New York

    Google Scholar 

  16. Roselle G (2012) SP12-14 Use of pH meter and electrode, Revision 3. Sandia National Laboratories, Carlsbad, NM

    Google Scholar 

  17. Xiong Y-L, Deng H-R, Nemer M, Johnsen S (2010) Geochim Cosmochim Acta 74:4605

Download references

Acknowledgments

This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. The author is grateful to Leslie Kirkes and Terry Westfall for their major efforts in the data acquisition. The laboratory assistance from Diana Goulding, Brittany Hoard, Cassandra Marrs, Rachael Roselle, Tana Saul, and Kira Vicent is gratefully acknowledged. The author wishes to express his gratitude to two journal reviewers for their insightful and thorough reviews, and to Dr. Heinz Gamsjäger, the Associate Editor, for his editorial efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongliang Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y. Experimental determination of lead carbonate solubility at high ionic strengths: a Pitzer model description. Monatsh Chem 146, 1433–1443 (2015). https://doi.org/10.1007/s00706-015-1483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1483-y

Keywords

Navigation