Skip to main content
Log in

Removal of Pb(II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Silver nanoparticles-decorated graphene oxide (Ag-GO) composites as advanced metal ion adsorbents have been synthesized. The silver nanoparticles (Ag-NPs) were homogeneously deposited onto graphene oxide (GO) surface by an optimal method, in which N,N-dimethylformamide as a co-dispersant is added to an aqueous suspension of GO and AgNO3. The Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy indicates that GO and Ag-GO are fully exfoliated. The synthesized Ag-GO NPs were used for removal of Pb(II) metal ions. The experiments showed that the removal of metal ions followed a pseudo-second-order kinetic model and equilibrium adsorption studies confirmed that the Langmuir model provided a better fit than others as revealed by high correlation coefficients and low Chi-square values. These Ag-GO NPs can be successfully used for the separation of Pb(II) from aqueous solutions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ganesh G, Chun-Chao C, Yong-Chien L (2013) ACS Sustain Chem Eng 1:462

    Article  Google Scholar 

  2. Ide Y, Nakasato Y, Ogawa M (2010) J Am Chem Soc 132:3601

    Article  CAS  Google Scholar 

  3. Chen W, Duan L, Wang L, Zhu DQ (2008) Sci Technol 42:6862

    Article  CAS  Google Scholar 

  4. Zuman P, Ludvık J (2000) Electroanalysis 12:879

    Article  CAS  Google Scholar 

  5. Fu FL, Wang Q (2011) J Environ Manag 92:407

    Article  CAS  Google Scholar 

  6. Wang YH, Lin SH, Juang RS (2003) J Hazard Mater 102:29

    Article  Google Scholar 

  7. Xiu-Zhi T, Xiaofeng L, Zongwei C, Jinglei Y, Huan W, Xue P, Zhong-Zhen Y (2013) Carbon 59:93

    Article  Google Scholar 

  8. Fan L, Luo C, Sun M, Li X, Qiu H (2013) Colloids Surf B 103:523

    Article  CAS  Google Scholar 

  9. Jabeen H, Kemp KC, Chandra V (2013) J Environ Manage 130:429

    Article  CAS  Google Scholar 

  10. Bolotin KI, Sikes KJ, Hone J, Stormer HL, Kim P (2008) Phys Rev Lett 101:096802

    Article  CAS  Google Scholar 

  11. Yanwu Z, Shanthi M, Weiwei C, Xuesong L, Ji Won S, Jeffrey RP, Rodney SR (2010) Adv Mater 22:3906

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  13. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Bioresour Technol 99:6709

    Article  Google Scholar 

  14. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G (2011) Angew Chem Int Ed 123:6035

    Article  Google Scholar 

  15. Veerapandian M, Lee MH, Moorthy KK, Yun K (2012) Carbon 50:4228

    Article  CAS  Google Scholar 

  16. Zhou NL, Meng N, Ma YC, Liao XM, Zhang J, Li L (2009) Carbon 47:1343

    Article  CAS  Google Scholar 

  17. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  18. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653

    Article  CAS  Google Scholar 

  19. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang EG, Dai HJ (2008) Nat Nanotechnol 3:538

    Article  CAS  Google Scholar 

  20. Some S, Prasenjit B, EunHee H, Keunsik L, Yeoheung Y, Sohyeon S, Hyoyoung L (2012) Chem Eur J 18:7665

    Article  CAS  Google Scholar 

  21. Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Nat Nanotechnol 3:210

    Article  CAS  Google Scholar 

  22. Martínez-Orozco RD, Rosu HC, Lee SW, Rodríguez-González V (2013) J Hazard Mater 263:52

    Article  Google Scholar 

  23. Satish B, Venkateswara Rao K, Shilpa Chakra CH, Tejaswi T (2013) Int J Adv Biotechnol Res 4:142

  24. Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R, Kuang Y (2013) Water Air Soil Pollut 224(1372):1

    Google Scholar 

  25. Witek-Krowiak A, Szafran RG, Modelski S (2011) Desalination 265:126

    Article  CAS  Google Scholar 

  26. Sari A, Tuzen M, Citak D, Soylak M (2007) J Hazard Mater 48:8387

    Google Scholar 

  27. Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Appl Mater Interfaces 4:1186

    Article  CAS  Google Scholar 

  28. Deng X, Lu L, Li H, Luo F (2010) J Hazard Mater 183:923

    Article  CAS  Google Scholar 

  29. Taty-Costades VC, Fauduest H, Porte C, Delacroix A (2003) J Hazard Mater 105B:121

    Article  Google Scholar 

  30. Ho YS, McKay G (1999) Process Biochem 34:451

    Article  CAS  Google Scholar 

  31. Weber WJ, Morris JC (1963) J Sanit Eng Div American Soc Civil Eng 89:31

    Google Scholar 

  32. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) ACS Nano 3:2653

    Article  CAS  Google Scholar 

  33. Catrinel Ion A, Ion I, Culetu A (2011) Mater Sci Eng B 176:504

  34. Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2013) J Mater Chem A 1:3789

    Article  CAS  Google Scholar 

  35. Yinli L, Fei C, Yunjie L, Long Z (2014) Chem Phys Lett 593:122

    Article  Google Scholar 

  36. Liying H, Hongjie S, Lichun Z, Xiangyu W, Yurong T, Yi Lv (2012) J Colloid Interface Sci 369:381

  37. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4:4806

    Article  CAS  Google Scholar 

  38. Alimohammadi F, Gashti MP, Shamei A, Kiumarsi A (2012) Superlatt Microstruct 52:50

    Article  CAS  Google Scholar 

  39. Venkata Ramana DK, Yu JS, Seshaiah K (2013) Chem Eng J 223:806

  40. Lagergren S (1898) Handlinger 24:1

    Google Scholar 

  41. Wu FC, Tseng RL, Juang RS (2001) Water Res 35:613

    Article  CAS  Google Scholar 

  42. Langmuir I (1918) J Am Chem Soc 40:1361

    Article  CAS  Google Scholar 

  43. Freundlich H (1906) Phys Chem Soc 40:1361

    Google Scholar 

  44. Dubinin MM, Radushkevich LV (1947) Proc Acad Sci USSR 55:331

    Google Scholar 

  45. Mckay G, Blair HS, Gardener JR (1982) J Appl Polym Sci 27:3043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Dongguk University for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Venkata Ramana Dandu Kamakshi Gari or Min Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandu Kamakshi Gari, V.R., Kim, M. Removal of Pb(II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies. Monatsh Chem 146, 1445–1453 (2015). https://doi.org/10.1007/s00706-015-1429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1429-4

Keywords

Navigation