Skip to main content
Log in

Theoretical study on the complexation of bambus[6]uril with the methanesulfonate and trifluoromethanesulfonate anions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril—CH3SO 3 and bambus[6]uril—CF3SO 3 anionic complex species were derived. In these two complexes having C 3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  2. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621

    Article  CAS  Google Scholar 

  3. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959

    Article  CAS  Google Scholar 

  4. Freeman WA, Mock WL, Shih NY (1981) J Am Chem Soc 103:7367

    Article  CAS  Google Scholar 

  5. Mock WL, Shih NY (1983) J Org Chem 48:3618

    Article  CAS  Google Scholar 

  6. Mock WL, Shih NY (1986) J Org Chem 51:4440

    Article  CAS  Google Scholar 

  7. Mock WL, Shih NY (1988) J Am Chem Soc 110:4706

    Article  CAS  Google Scholar 

  8. Mock WL, Shih NY (1989) J Am Chem Soc 111:2697

    Article  CAS  Google Scholar 

  9. Isobe H, Tomita N, Lee JW, Kim HJ, Kim K, Nakamura E (2000) Angew Chem Int Ed 39:4257

    Article  CAS  Google Scholar 

  10. Isobe H, Sota S, Lee JW, Kim HJ, Kim K, Nakamura E (2005) Chem Commun 1549–1551

  11. Tan Y, Choi S, Lee JW, Ko YH, Kim K (2002) Macromolecules 35:7161

    Article  CAS  Google Scholar 

  12. Márquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806

    Article  Google Scholar 

  13. Buschmann HJ, Mutihac L, Mutihac RC, Schollmeyer E (2005) Thermochim Acta 430:79

    Article  CAS  Google Scholar 

  14. Buschmann HJ, Schollmeyer E, Mutihac L (2003) Thermochim Acta 399:203

    Article  CAS  Google Scholar 

  15. Miyahara Y, Goto K, Oka M, Inazu T (2004) Angew Chem Int Ed 43:5019

    Article  CAS  Google Scholar 

  16. Li Y, Li L, Zhu Y, Meng X, Wu A (2009) Cryst Growth Des 9:4255

    Article  CAS  Google Scholar 

  17. Buschmann HJ, Zielesny A, Schollmeyer E (2006) J Incl Phenom Macrocycl Chem 54:181

    Article  CAS  Google Scholar 

  18. Buschmann HJ, Cleve E, Schollmeyer E (2005) Inorg Chem Commun 8:125

    Article  CAS  Google Scholar 

  19. Svec J, Necas M, Sindelar V (2010) Angew Chem Int Ed 49:2378

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

  23. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236

    Article  Google Scholar 

  24. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  25. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Google Scholar 

  26. Makrlík E, Toman P, Vaňura P (2012) Monatsh Chem 143:199

    Article  Google Scholar 

  27. Makrlík E, Toman P, Vaňura P (2013) Monatsh Chem 144:919

    Article  Google Scholar 

  28. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  29. van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society”, and by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makrlík, E., Toman, P. & Vaňura, P. Theoretical study on the complexation of bambus[6]uril with the methanesulfonate and trifluoromethanesulfonate anions. Monatsh Chem 146, 1609–1612 (2015). https://doi.org/10.1007/s00706-015-1417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1417-8

Keywords

Navigation