Skip to main content
Log in

Enhanced electrocatalytic determination of fenitrothion at graphene and silver–zirconia nanosensor

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A nanocomposite sensor based on Ag-ZrO2 nanoparticles and graphene was fabricated and employed for electrocatalytic detection of fenitrothion. Improved electrocatalytic activity of the sensor was demonstrated by cyclic voltammetry and impedance techniques. In fenitrothion, electrochemical reduction of the nitro group to hydroxylamine was found to be irreversible, adsorption-controlled, and pH dependent. Improved voltammetric peak signals for fenitrothion were obtained due to the synergistic effect of silver and zirconia nanoparticles over graphene support. Square wave adsorptive stripping voltammetric method was developed for highly sensitive determination of fenitrothion. Working conditions such as pH, accumulation potential, accumulation time, square wave frequency, square wave amplitude, and scan rate were optimized with respect to maximum and well-defined peak signals. Wide linear range was observed between the peak signals and concentration of fenitrothion over the range 0.1–100 nM with a detection limit of 0.56 nM. The proposed stripping voltammetric protocol is readily applied for the determination of fenitrothion in well water and soil samples with good recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Benli ACK, Özkul A (2010) Pestic Biochem Physiol 97:32

    Article  CAS  Google Scholar 

  2. Sarikaya R, Dinçel AS, Benli ACK, Selvi M, Erkoç F (2011) J Biochem Mol Toxicol 25:169

    Article  CAS  Google Scholar 

  3. Story P, Hooper MJ, Astheimer LB, Buttemer WA (2011) Environ Toxicol Chem 30:1163

    Article  CAS  Google Scholar 

  4. Ahmadi F, Jafari B (2011) Electroanalysis 23:675

    CAS  Google Scholar 

  5. Sánchez A, Millán S, Sampedro MC, Unceta N, Rodríguez E, Goicolea MA, Barrio RJ (2008) J Chromatogr A 1177:170

    Article  Google Scholar 

  6. Pitarch E, Serrano R, López FJ, Hernández F (2003) Anal Bioanal Chem 376:189

    CAS  Google Scholar 

  7. Morzycka Bozena (2002) J Chromatogr A 982:267

    Article  CAS  Google Scholar 

  8. Ahmadi F, Assadi Y, Milani Hosseini SMR, Rezaee M (2006) J Chromatogr A 1101:307

    Article  CAS  Google Scholar 

  9. Ortega AS, Sampedro MC, Unceta N, Goicolea MA, Barrio RJ (2005) J Chromatogr A 1094:70

    Article  Google Scholar 

  10. Galeano-Díaz T, Guiberteau-Cabanillas A, Mora-Díez N, Parrilla-Vázquez P, Salinas-López F (2000) J Agric Food Chem 48:4508

    Article  Google Scholar 

  11. Pereira LA, Rath S (2009) Anal Bioanal Chem 393:1063

    Article  CAS  Google Scholar 

  12. Chunxia Wu, Liu Ning, Qiuhua Wu, Wang Chun, Wang Zhi (2010) Anal Chim Acta 679:56

    Article  Google Scholar 

  13. Kim YJ, Kim YA, Lee YT, Lee HS (2007) Anal Chim Acta 591:183

    Article  CAS  Google Scholar 

  14. Coly A, Aaron JJ (1994) Analyst 119:1205

    Article  CAS  Google Scholar 

  15. Pawlak MK (2004) Polish J Environ Studies 13:411

    CAS  Google Scholar 

  16. Melgar LZ, Machado SAS (2005) J Braz Chem Soc 16:743

    Article  CAS  Google Scholar 

  17. Galeano-Díaz T, Guiberteau-Cabanillas A, Espinosa-Mansilla A, López-Soto MD (2008) Anal Chim Acta 618:131

    Article  Google Scholar 

  18. Li C, Wang C, Ma Y, Hu S (2004) Microchim Acta 148:27

    CAS  Google Scholar 

  19. Majidi MR, Asadpour-Zeynali K, Nazarpur M (2009) J AOAC Int 92:548

    CAS  Google Scholar 

  20. Pellicer C, Gomez-Caballero A, Unceta N, Goicolea AM, Barrio RJ (2010) Anal Methods 2:280

    Article  Google Scholar 

  21. Kumaravel A, Chandrasekaran M (2011) J Electroanal Chem 650:163

    Article  CAS  Google Scholar 

  22. Sreedhar NY, Reddy Prasad P, Nageswara Reddy C, Sreenivasa Prasad K (2011) Int J Nanosci Nanotechnol 1:6

    Google Scholar 

  23. Geremedhin W, Amare M, Admassie S (2013) Electrochim Acta 87:749

    Article  CAS  Google Scholar 

  24. Palazzo F, Codognoto L, Simões FR (2013) Sens Lett 11:2310

    Article  CAS  Google Scholar 

  25. Amare M, Abicho S, Admassie S (2014) J AOAC Int 97:580

    Article  CAS  Google Scholar 

  26. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027

    Article  CAS  Google Scholar 

  27. Ma H, Wu D, Cui Z, Li Y, Zhang Y, Du B, Wei Q (2013) Anal Lett 46:1

    Article  Google Scholar 

  28. Katz E, Willner I, Wang J (2004) Electroanalysis 16:19

    Article  CAS  Google Scholar 

  29. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Electroanalysis 18:319

    Article  CAS  Google Scholar 

  30. Wang F, Hu S (2009) Microchim Acta 165:1

    Article  CAS  Google Scholar 

  31. Wang J (2012) Microchim Acta 177:245

    Article  CAS  Google Scholar 

  32. Merkoçi A (2013) Electroanalysis 25:15

    Article  Google Scholar 

  33. Lu X, Qi H, Zhang X, Xue Z, Jin J, Zhou X, Liu X (2011) Chem Commun 47:12494

    Article  CAS  Google Scholar 

  34. Liu G, Lin Y (2005) Anal Chem 77:5894

    Article  CAS  Google Scholar 

  35. Gong J, Miao X, Zhou Z, Zhang L (2011) Talanta 85:1344

    Article  CAS  Google Scholar 

  36. Du D, Liu J, Zhang X, Cui X, Lin Y (2011) J Mater Chem 21:8032

    Article  CAS  Google Scholar 

  37. Wang K, Li HN, Wu J, Ju C, Yan JJ, Liu Q, Qiu B (2011) Analyst 136:3349

    Article  CAS  Google Scholar 

  38. Yang L, Wang G, Liu Y (2013) Anal Biochem 437:144

    Article  CAS  Google Scholar 

  39. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  40. Bard AJ, Faulkner LR (2004) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The financial support for the present work by Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Mumbai, India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Sreedhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreedhar, N.Y., Sunil Kumar, M. & Krishnaveni, K. Enhanced electrocatalytic determination of fenitrothion at graphene and silver–zirconia nanosensor. Monatsh Chem 146, 1385–1393 (2015). https://doi.org/10.1007/s00706-015-1415-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-015-1415-x

Keywords

Navigation