Skip to main content
Log in

Complex formation of phthalocyanine derivatives substituted by polyethylene oxide with alkali metal ions in methanol

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Amphiphilic bifunctional phthalocyanine (Pc) derivatives (protonated compound: EO–H2Pc and copper(II) complex: EO–CuPc) having methylhexaethylene oxide (EO: –O(CH2CH2O)6–CH3) have been synthesized. Dimerization equilibria of EO–H2Pc in alcohols and complex formation with alkali metal ion (Li+, Na+, and K+) in methanol have been studied by means of absorption and fluorescence spectrophotometry. EO–H2Pc in methanol exists predominantly as a dimer, (EO–H2Pc)2. By the reaction with alkali metal hydroxide, the dimer dissociates to monomer and forms complexes at the Pc moiety and/or EO moiety. Lithium ion is captured inside the cavity of the Pc ring and forms a stable complex, EO–LiPc. Sodium ion and potassium ion, the ion sizes of which are larger than the cavity size of Pc, form “sitting a top” (SAT) complex, that is, the metal ion in the complex with Pc moiety is located on the outside of the Pc ring. By the reaction with NaOH, sodium ion is inserted between the dimeric Pc ring, (EO–Na1/2Pc)2 at the first step, then forms a monomeric 1:1 complex, EO–NaPc. In the case of reaction with KOH, the monomeric complex, in which potassium ion is coordinated at the EO moiety, (KEO)+H2Pc, is formed as the first step. Then, the Pc moiety coordinates to the potassium ion, (KEO)+–KPc. The structures of complexes were confirmed by the reaction of EO–CuPc. The order of stability of alkali metal ion complex is obtained as Li+ > > Na+ > K+ for Pc moiety and Li+ < Na+ < < K+ for EO moiety.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hirohashi R, Sakamoto K, Okumura E (2004) Phthalocyanines as functional dyes: basics and applications. IPC, Tokyo

    Google Scholar 

  2. Leznoff CC, Lever ABP (1996) Phthalocyanines: properties and applications, vol 1–4. VCH, New York

    Google Scholar 

  3. Shirai H, Kobayashi N (1997) Phthalocyanines: chemistry and applications. IPC, Tokyo

    Google Scholar 

  4. Cook MJ, Heeney MJ (2000) Chem Commun 2000:969

    Article  Google Scholar 

  5. Hayashi H, Nihashi W, Umeyama T, Matano Y, Seki S, Shimizu Y, Imahori H (2011) J Am Chem Soc 133:10736

    Article  CAS  Google Scholar 

  6. Öeztuerk ZZ, Necmettin K, Devrim A, Güerek AG, Ahsen V (2009) J Porphyr Phthalocyanines 13:1179

    Article  Google Scholar 

  7. Cook MJ, Chambrier I (2011) J Porphyr Phthalocyanines 15:149

    Article  CAS  Google Scholar 

  8. O’Flaherty SM, Hold SV, Cook MJ, Torres T, Chen Y, Hanack M, Blau WJ (2003) Adv Mater 15:19

    Article  Google Scholar 

  9. García-Frutos EM, O’Flaherty SM, Maya EM, de la Torre G, Blau W, Vázqueza P, Torres T (2003) J Mater Chem 13:749

    Article  Google Scholar 

  10. Martinez-Diaz MV, de la Torre G, Torres T (2010) Chem Commun 46:7090

    Article  CAS  Google Scholar 

  11. Mitzel F, Fitzgerald S, Beeby A, Faust R (2003) Chem Eur J 9:1233

    Article  CAS  Google Scholar 

  12. Hofman J-W, van Zeeland F, Turker S, Talsma H, Lambrechts SAG, Sakharov DV, Hennink WE, van Nostrum CF (2007) J Med Chem 50:1485

    Article  CAS  Google Scholar 

  13. Kadish K, Smith KM, Guilard R (2003) The Porphyrin Handbook, vols 17, 19, 20. Academic Press, New York

  14. Horn D, Honigmann B (1974) XIIth Fatipec Congress Book, p 181

  15. Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Coord Chem Rev 254:2792

    Article  CAS  Google Scholar 

  16. Vacus J, Dopplet P, Simon J, Memetzidis G (1992) J Mater Chem 2:1065

    Article  CAS  Google Scholar 

  17. Toei K, Motomizu S, Umato T (1982) Talanta 29:103

    Article  CAS  Google Scholar 

  18. Mohite BS, Khopkar SM (1987) Anal Chem 59:1200

    Article  CAS  Google Scholar 

  19. Favretto L, Tunis F (1987) Analyst 101:198

    Article  Google Scholar 

  20. Kimura K, Kumami K, Kitazawa S, Shono T (1984) Anal Chem 56:2369

    Article  CAS  Google Scholar 

  21. Samec Z, Papoff P (1990) Anal Chem 62:1010

    Article  CAS  Google Scholar 

  22. Nakamura T, Ueda T, Fujimori K (1992) Bull Chem Soc Jpn 65:19

    Article  CAS  Google Scholar 

  23. Nakagawa T, Murata H, Shibukawa A, Murakami K, Tanaka H (1985) J Chromatogr 330:43

    Article  CAS  Google Scholar 

  24. Fujita H, Yanagida S, Okahara M (1980) Anal Chem 52:869

    Article  CAS  Google Scholar 

  25. Okada T (1991) J Chromatogr 586:277

    Article  CAS  Google Scholar 

  26. Sawada K, Chigira F, Satoh K, Komatsuzaki T (1997) J Chem Soc Faraday Trans 93:1903

    Article  CAS  Google Scholar 

  27. Sawada K, Satoh K, Haruta C, Kikuchi Y (1999) Phys Chem Chem Phys 1:2737

    Article  CAS  Google Scholar 

  28. Sawada K, Imai A, Satoh K, Kikuchi Y (2007) J Phys Chem B 111:4361

    Article  CAS  Google Scholar 

  29. Kobayashi N, Lever ABP (1987) J Am Chem Soc 109:7433

    Article  CAS  Google Scholar 

  30. Ahsen V, Yilmazer E, Ertas M, Bekâroğlu Ö (1988) J Chem Soc Dalton Trans 1988:401

    Article  Google Scholar 

  31. Gürol I, Ahsen V (2000) J Porphyr Phthalocyanines 4:620

    Article  Google Scholar 

  32. Sawada K, Duan W, Sekitani K, Satoh K (2005) J Mol Liq 119:171

    Article  CAS  Google Scholar 

  33. Kobayashi M, Kigawa Y, Satoh K, Sawada K (2012) J Porphyr Phthalocyanines 16:183

    Article  CAS  Google Scholar 

  34. Kobayashi M, Satoh K, Sawada K (2012) J Porphyr Phthalocyanines 18:359

    Article  Google Scholar 

  35. Piechocki C, Simon J (1985) Nouv J Chim 9:159

    CAS  Google Scholar 

  36. Schutte WJ, Sluyters-Rehbach M, Sluyters JH (1993) J Phys Chem 97:6069

    Article  CAS  Google Scholar 

  37. George RD, Snow AW, Shirk JS, Barger WR (1998) J Porphyr Phthalocyanines 2:1

    Article  CAS  Google Scholar 

  38. Dhami S, Phillips DJ (1996) Photochem Photobiol A 100:77

    Article  CAS  Google Scholar 

  39. Charlot G, Tremillon B, Harve PJJ (1969) Chemical reactions in solvents and melts. Elsevier, Amsterdam

    Google Scholar 

  40. Shannon RD (1969) Acta Crystallogr A 32:751

    Article  Google Scholar 

  41. Arnold J, Dawson DY, Hoffman CG (1993) J Am Chem Soc 115:2707

    Article  CAS  Google Scholar 

  42. Richards RA, Hammons K, Joe M, Miskelly GM (1996) Inorg Chem 35:1940

    Article  CAS  Google Scholar 

  43. Cissell JA, Vaid TP (2007) Inorg Chem 46:4360

    Article  CAS  Google Scholar 

  44. Giovanna DL, Andrea R, Luigi MS, Giampaolo R, Angela R (2009) Inorg Chem 48:8493

    Article  Google Scholar 

  45. Pietrangeli D, Rosa A, Pepe A, Ricciardi G (2011) Inorg Chem 50:4680

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Sawada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawada, K., Kobayashi, M. & Satoh, K. Complex formation of phthalocyanine derivatives substituted by polyethylene oxide with alkali metal ions in methanol. Monatsh Chem 146, 547–558 (2015). https://doi.org/10.1007/s00706-014-1398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1398-z

Keywords

Navigation