Skip to main content
Log in

C20−n Ge n heterofullerenes (n = 5–10) on focus: a density functional perspective

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We are focusing our calculations on the structural stabilities and electronic properties of six novel C20−n Ge n heterofullerenes, with n = 5–10, at B3LYP/6-311++G** and B3LYP/AUG-cc-pVTZ levels. Vibrational frequency calculations on C20 and its six C20−n Ge n analogs show them as true minima. In contrast to identical bonds in the former, contractions of C=C double bonds are encountered at the expense of longer C–Ge bonds in heterofullerenes. Band gaps (ΔE HOMO–LUMO) of heterofullerenes become narrower as n increases. As to band gaps, C14Ge6 immerges with the highest ΔE HOMO–LUMO = 1.81 eV. Hence, it is predicted to be most stable against electronic excitation. It has C i symmetry and contains four germanium atoms in equatorial and two at the cap positions. On the other hand, C15Ge5 appears with the lowest ΔE HOMO–LUMO = 1.25 eV. It has C 5v symmetry and contains five alternating germanium atoms in equatorial position. So, C15Ge5 is predicted to orchestrate a higher conductivity and charge transfer, making it a possible candidate for hydrogen storage. Assuming the binding energy (E b) as a criterion of stability, the more stable species turn out to be both C20 parent fullerene, and C15Ge5 heterofullerene with E b = 8.0, and 7.0 eV/atom, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lu X, Chen Z (2005) Chem Rev 105:3643

    Article  CAS  Google Scholar 

  2. Alasak T, Nagase S (2001) Endofullerenes: a new family of carbon clusters. Kluwer Academic, Dordrecht

    Google Scholar 

  3. Luo J, Peng LM, Xue ZQ, Wu JL (2004) J Chem Phys 120:7998

    Article  CAS  Google Scholar 

  4. Chen Z, Heine T, Jiao H, Hirsch A, Thiel W, Schleyer PvR (2004) Chem Eur J 10:963

  5. Slanina Z, Adamowicz L (1993) Fullerene Sci Technol 1:1

    Article  CAS  Google Scholar 

  6. Slanina Z, Adamowicz L (1992) Thermochim Acta 205:299

    Article  CAS  Google Scholar 

  7. Slanina Z, Adamowicz L (1993) J Mol Struct (THEOCHEM) 281:33

    Article  Google Scholar 

  8. Handschuh H, Gantefor G, Kessler B, Bechthold PS, Eberhardt W (1995) Phys Rev Lett 74:1095

    Article  CAS  Google Scholar 

  9. Ott AK, Rechtsteiner GA, Felix C, Hampe O, Jarrold MF, Duyne RPV, Raghavachari K (1998) J Chem Phys 109:9652

    Article  CAS  Google Scholar 

  10. Domene MC, Fowler PW, Mitchell D, Seifert G, Zerbetto F (1997) J Phys Chem A 101:8339

    Article  CAS  Google Scholar 

  11. Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915

    Article  CAS  Google Scholar 

  12. Galli G, Gygi F, Golaz JC (1998) Phys Rev B 57:1860

    Article  CAS  Google Scholar 

  13. Bertau M, Wahl F, Weiler A, Scheumann K, Worth J, Keller M, Prinzbach H (1997) Tetrahedron 53:10029

    Article  CAS  Google Scholar 

  14. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff B (2000) Nature 407:60

    Article  CAS  Google Scholar 

  15. Buhl M, Hirsch A (2006) Chem Rev 106:5191

    Article  Google Scholar 

  16. Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000) Nature 407:60

    Article  CAS  Google Scholar 

  17. Slanina Z, Zhao X, Chiang LY, Osawa E (1999) Int J Quantum Chem 74:343

    Article  CAS  Google Scholar 

  18. Alder RW, Blake M, Oliva JM (1999) J Phys Chem A 103:11200

    Article  CAS  Google Scholar 

  19. Huda MN, Ray AK (2008) Chem Phys Lett 457:124

    Article  CAS  Google Scholar 

  20. Tang C, Zhu W, Deng K (2009) J Mol Struct 909:43

    Article  CAS  Google Scholar 

  21. Froudakis GE (2001) Nano Lett 1:531

    Article  CAS  Google Scholar 

  22. Menon M, Richter E, Mavrandonakis A, Froudakis GE, Andriotis AN (2004) Phys Rev B 69:115322

    Article  Google Scholar 

  23. Mavrandonakis A, Froudakis GE, Schnell M, Muhlhauser M (2003) Nano Lett 3:1481

    Article  CAS  Google Scholar 

  24. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) Nano Lett 6:1581

    Article  CAS  Google Scholar 

  25. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Znkrzewski VG, Montgomery GA, Startmann RE Jr, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pamelli C, Adamo G, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokoma D, Malick K, Rubuck AD, Raghavachari K, Foresman JB, Cioslawski J, Oritz JV, Stlefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Comperts R, Martin RL, Fox PJ, Keith T, Al-laham MA, Peng CY, Akkara AN, Gonzales CG, Combe MC, Gill PMW, Johnson B, Chem W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, vol 98. Gaussian Inc, Pittsburgh

    Google Scholar 

  29. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    Article  CAS  Google Scholar 

  30. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

  31. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comput Chem 4:294

  32. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  33. Krishna R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244

    Article  Google Scholar 

  34. Hehre WJ, Radom L, PvR Schleyer, Pople JA (1986) Ab Initio molecular orbital theory. Wiley, New York

    Google Scholar 

  35. Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 3.1

  36. Schleyer PvR, Maerker C, Dransfeld A, Jiao H, Hommes NJRvE (1996) J Am Chem Soc 118:6317

  37. Chen Z, Ma K, Zhao H, Pan Y, Zhao X, Tang A, Feng J (1999) J Mol Struct (THEOCHEM) 466:127

    Article  CAS  Google Scholar 

  38. Mizorogi N, Aihara J-I (2003) Phys Chem Chem Phys 5:3368

    Article  CAS  Google Scholar 

  39. Watanabe M, Ishimaru D, Mizorogi N, Kiuchi M, Aihara J-I (2005) J Mol Struct (THEOCHEM) 726:11

    Article  CAS  Google Scholar 

  40. Yang Z, Xu X, Wang G, Shang Z, Cai Z, Pan Y, Zhao X (2002) J Mol Struct (THEOCHEM) 618:191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully thank Dr. M. Ghambarian, and H. Zandi for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

706_2014_1388_MOESM1_ESM.doc

Supporting Information available: Full references for Gaussian 98, xyz coordinates, and all energies given as kcal/mol are expressed in the SI unit kJ/mol for optimized structures studied in this work (DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koohi, M., Kassaee, M.Z., Ghavami, M. et al. C20−n Ge n heterofullerenes (n = 5–10) on focus: a density functional perspective. Monatsh Chem 146, 1409–1417 (2015). https://doi.org/10.1007/s00706-014-1388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1388-1

Keywords

Navigation